CONTENTS

<table>
<thead>
<tr>
<th>Page No.</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>ABSTRACT</td>
</tr>
<tr>
<td>II</td>
<td>LIST OF FIGURES</td>
</tr>
<tr>
<td>III</td>
<td>LIST OF TABLES</td>
</tr>
<tr>
<td>IV</td>
<td>LIST OF ABBREVIATIONS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 1
Introduction to Pyrochemical Processing and Material’s Challenges

1.1 Fast Breeder Reactor Programme in India
1.2 Metallic fuel Fast Breeder Reactors for future energy security
1.3 Overview on pyrochemical reprocessing
1.3.1 Salt purification system
1.3.2 Electorefining
1.3.3 Cathode processor system
1.3.4 Injection casting system
1.3.5 Waste management system
1.4 Material’s challenges for pyrochemical reprocessing plant
1.5 Scope of the present thesis work
References

CHAPTER 2
A Review on the Materials and Coatings for Molten Salt and Uranium Applications

2.1 International experience on pyrochemical reprocessing
2.2 Carbon materials
2.3 Application of carbon materials in nuclear technology
2.4 Molten salt corrosion behaviour of structural materials
CHAPTER 3

Materials, Methods and Characterization Techniques

3.1 Materials selection, their properties and their composition

3.1.1 Carbon materials

3.1.2 Plasma spray materials

3.1.2.1 Chemical composition and particle size distribution

3.1.2.2 Powder morphology

3.1.2.3 Phase constitution of the starting powders

3.1.3 Coating procedure and post treatments

3.1.3.1 Preparation of substrate

3.1.3.2 Plasma spraying

3.1.3.3 Post spray treatment techniques

3.1.3.3.1 Vacuum annealing

3.1.3.3.2 Laser melting

3.1.3.4 Sample preparation for metallographic observation

3.2 Methods

3.2.1 Specimen preparation

3.2.2 Molten salt preparation

3.2.3 Molten salt test assembly for corrosion studies

3.2.4 Thermal cycling testing

3.2.5 Computation of Gibb’s free energies

3.2.6 Uranium melting

3.3 Characterization of materials and coatings

3.3.1 Weight change measurement

3.3.2 Visual examination
3.3.3 Optical microscopy 89
3.3.4 Scanning electron microscopy (SEM)/Energy dispersive X-ray spectroscopy (EDX) 90
3.3.5 Atomic force microscopy (AFM) 92
3.3.6 X-ray diffraction (XRD) 93
3.3.7 Raman spectroscopy 95
3.3.8 Vickers microhardness tester 98
3.3.9 Surface profilometry 99

References 99

CHAPTER 4 103

Corrosion Behaviour of Carbon Materials in Molten LiCl-KCl Salt

4.1 Introduction 103
4.2 Experimental 105
4.3 Results and Discussion 106

4.3.1 Visual examination and corrosion behaviour of carbon materials 106

4.3.2 Microstructural studies and surface morphology of low and high density graphite 107

4.3.2.1 SEM-EDX and AFM studies 107
4.3.2.2 X-ray diffraction studies 114

4.3.3 Surface morphology of glassy carbon 115

4.3.4 Microstructural studies and surface morphology of pyrolytic graphite 116

4.3.4.1 Optical Microscopy, SEM-EDX and AFM studies 116
4.3.4.2 X-ray diffraction studies 121

4.3.5 Laser Raman spectroscopic studies of low density graphite, high density graphite and pyrolytic graphite 122

4.3.6 Degradation mechanisms of carbon materials 128

4.4 Summary 129
CHAPTER 5

Plasma Sprayed Alumina-40 wt% Titania Coating (A40T) on High Density Graphite

5.1 Introduction

5.2 Experimental

5.3 Results and Discussion

5.3.1 Characterization of as-sprayed coatings

5.3.2 Corrosion behaviour of A40T coatings in molten LiCl-KCl salt

5.3.2.1 Corrosion assessment

5.3.2.2 Morphology of corrosion tested A40T coated HD graphite

5.3.2.3 XRD studies on corrosion tested A40T coated HD graphite

5.3.3 Surface modification by post treatments

5.3.3.1 Vacuum annealing of A40T coating

5.3.3.2 Pulsed laser melting of A40T coating

5.3.3.3 Phase analysis of post spray treated A40T coatings

5.3.3.4 Microhardness of post spray treated A40T coatings

5.3.3.5 Surface roughness of post treated A40T coatings

5.3.3.6 Corrosion studies on pulsed laser melted A40T coating (morphology and phase analysis)

5.3.4 Uranium melting

5.3.4.1 Compatibility studies based on Gibbs free energy and visual examination

5.3.4.2 Morphology of A40T coatings

5.3.5 Thermal cycling studies

5.3.5.1 Visual examination and weight loss studies

5.3.5.2 Morphology of thermal cycled A40T coating

5.4 Summary
CHAPTER 6

Plasma Sprayed Partially Stabilized Zirconia Coating (PSZ) on High Density Graphite

6.1 Introduction

6.2 Experimental

6.3 Results and Discussion

6.3.1 Corrosion behaviour in molten LiCl-KCl salt

6.3.1.1 Visual examination and calculation of weight change

6.3.1.2 Surface morphology of immersion tested uncoated HD graphite

6.3.1.3 Surface morphology of immersion tested PSZ coated HD graphite

6.3.1.4 Cross sectional morphologies of immersion tested PSZ coated HD graphite

6.3.1.5 XRD studies on immersion tested PSZ coated HD graphite

6.3.1.6 Raman studies on immersion tested PSZ coated HD graphite

6.3.1.7 Raman imaging/mapping studies on immersion tested PSZ coated HD graphite

6.3.2 Uranium melting

6.3.2.1 Compatibility studies based on Gibbs free energy and visual examination

6.3.2.2 Morphology of uranium melted PSZ coatings

6.3.2.3 Phase analysis of uranium melted PSZ coatings

6.3.3 Thermal cycling studies

6.3.3.1 Porosity and visual examination of PSZ coatings

6.3.3.2 Weight loss studies of thermal cycled PSZ coating

6.3.3.3 Morphology of thermal cycled PSZ coatings
6.3.3.4 Phase analysis of thermal cycled PSZ coatings

6.4 Summary

References

CHAPTER 7
Conclusions, Summary and Scope for Future Work

7.1 Conclusions

7.1.1 Corrosion behaviour of carbon materials in LiCl-KCl salt

7.1.2 Plasma sprayed alumina-40 wt% titania (A40T) coating on high density graphite

7.1.3 Plasma sprayed partially stabilized zirconia (PSZ) coating on high density graphite

7.2 Summary

7.3 Scope for future work