List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Figure Legend</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1: Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure 1.1:</td>
<td>Glucose polymers present in starch molecules: (A) amylase and (B) amylopectin.</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1.2:</td>
<td>Schematic representation of the site of action on amylopectin molecules by various amyloytic enzymes.</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.3:</td>
<td>Domain organization of \textit{B. licheniformis} (\alpha)-amylase (BLA) enzyme (PDB code 1BLI).</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.4:</td>
<td>Topology illustration of (\alpha)-amylase family.</td>
<td>12</td>
</tr>
<tr>
<td>Figure 1.5:</td>
<td>The seven conserved sequence regions found in the (\alpha)-amylase family.</td>
<td>13</td>
</tr>
<tr>
<td>Figure 1.6:</td>
<td>Nomenclature of active site cleft subsite for amylases family.</td>
<td>15</td>
</tr>
<tr>
<td>Figure 1.7:</td>
<td>The double displacement mechanism of retaining glycosyl hydrolases.</td>
<td>16</td>
</tr>
<tr>
<td>Chapter 3: Material & Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure 3.1:</td>
<td>Schematic representation of cloning experiment for (\alpha)-amylase genes in \textit{E. coli}.</td>
<td>88</td>
</tr>
<tr>
<td>Chapter 4: Results (\textit{B. subtilis} strain AS01a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure 4.1:</td>
<td>Plates showing halo zone formation on starch agar plates by extracellular amylase producing strain AS01a isolated from soil sample collected from Golaghat district of Assam.</td>
<td>104</td>
</tr>
<tr>
<td>Figure 4.2:</td>
<td>Differential staining of the extracellular amylase producing strain AS01a.</td>
<td>105</td>
</tr>
<tr>
<td>Figure 4.3:</td>
<td>Biochemical characterization of the isolated strain AS01a.</td>
<td>106</td>
</tr>
<tr>
<td>Figure 4.4:</td>
<td>Agarose gel analysis of genomic DNA and PCR amplified 16S rDNA from strain AS01a.</td>
<td>108</td>
</tr>
<tr>
<td>Figure 4.5:</td>
<td>Phylogenetic relationships of strain AS01a and other closely related \textit{Bacillus} species based on 16S rDNA sequencing.</td>
<td>110</td>
</tr>
<tr>
<td>Figure 4.6:</td>
<td>Agarose gel analysis of PCR-amplified gyrase A gene from \textit{Bacillus} sp. strain AS01a.</td>
<td>111</td>
</tr>
<tr>
<td>Figure 4.7:</td>
<td>Evolutionary relationships of strain AS01a and other closely related \textit{Bacillus} species based on gyrase A gene sequence.</td>
<td>113</td>
</tr>
<tr>
<td>Figure 4.8:</td>
<td>Agarose gel analysis of PCR-amplified Rpo B gene from the \textit{Bacillus} sp. strain AS01a.</td>
<td>114</td>
</tr>
</tbody>
</table>
Figure 4.9: Evolutionary relationships of strain AS01a and other closely related Bacillus species based on RNA polymerase B gene sequences. 116

Figure 4.10: Agarose gel electrophoresis of PCR-amplified ISR region from the strain AS01a. 117

Figure 4.11: Evolutionary relationships of strain AS01a and other closely related Bacillus species based on 16S-23S ISR sequence by NJ method. 119

Figure 4.12: Influence of various sources of carbon on growth of and α-amylase production by B. subtilis strain AS01a. 120

Figure 4.13: Influence of various sources of nitrogen on the growth of and α-amylase production by B. subtilis strain AS01a. 121

Figure 4.14: Effect of pH of the media on growth of, and α-amylase production, by B. subtilis strain AS01a. 122

Figure 4.15: Effect of temperature on growth of, and α-amylase production, by B. subtilis strain AS01a. 123

Figure 4.16: Kinetics of growth (□) and α-amylase production (▲) by B. subtilis strain AS01a on M9 medium containing (1% w/v) starch and beef-extract (3 g/l), pH 6.0. 124

Figure 4.17: Response surface plots for α-amylase production by B. subtilis strain AS01a. 128

Figure 4.18: Contour plots showing interaction effect of test variables on α-amylase production from B. subtilis strain AS01a. 129

Figure 4.19: Optimization plot showing the optimum value for maximum alkaline α-amylase production from B. subtilis strain AS01a. 130

Figure 4.20: Gel-filtration profile of acetone-precipitated fraction of α-amylase from B. subtilis strain AS01a through Sephadex G-50 column. 131

Figure 4.21: SDS-PAGE analysis of purified α-amylase from B. subtilis strain AS01a. 132

Figure 4.22: Graph showing optimum dose determination of the purified enzyme from B. subtilis strain AS01a. 134

Figure 4.23: Determination of optimum time of incubation for the purified α-amylase from B. subtilis strain AS01a. 134

Figure 4.24: Graph showing pH dependence of the activity of the purified enzyme from B. subtilis strain AS01a. 135

Figure 4.25: Plot showing temperature dependence of the activity of the purified enzyme from B. subtilis strain AS01a. 136

Figure 4.26: Effect of temperature on stability of purified α-amylase from B. subtilis strain AS01a in presence (■) or in absence (●) of (5 mM) Ca²⁺ ion. 137
Figure 4.27: Lineweaver-Burk plot to determine K_m and V_{max} values of the purified α-amylase from B. subtilis strain AS01a.

Figure 4.28: Thin layer chromatogram of digested product obtained from hydrolysis of (1% w/v) soluble starch by purified α-amylase.

Figure 4.29: Scanning electron microscopic (SEM) photographs of potato starch granules.

Figure 4.30: Detergent stability and compatibility of purified α-amylase (0.7mg/ml) from B. subtilis strain AS01a at 30°C (■) and 37°C (■).

Figure 4.31: Wash performance analysis tests of chocolate-stained cloth pieces.

Figure 4.32: Agarose gel analysis of genomic DNA from B. subtilis strain AS01a and PCR-amplified α-amylase gene from its genomic DNA using BSF1 and BSR2 set of primers.

Figure 4.33: (a) Transformation plate containing recombinant TA vector. (b) Agarose gel analysis of the recombinant clone.

Figure 4.34: Agarose gel analysis of amplified α-amylase gene from strain AS01a using new set of primers (BSF3 and BSR4).

Figure 4.35: Transformed E. coli BL21a cells containing pET28a (a) and recombinant pET28a vector containing amylase gene insert from AS01a (b).

Figure 4.36: Agarose gel analysis of pET28-BSAMY vector by restriction digestion and PCR amplification.

Figure 4.37: Multiple sequence alignment of deduced amino acid sequence of amyBS-I with homologous α-amylases.

Figure 4.38: Starch agar plate analysis of extracellular expression of recombinant amylase from B. subtilis AS01a in E. coli.

Figure 4.39: SDS-PAGE analysis of extracellular expression of recombinant α-amylase from B. subtilis AS01a in E. coli.

Figure 4.40: Response surface plots showing interaction effect of test variables on extracellular overexpression of AmyBS-I from E. coli BL21 cells.

Figure 4.41: Optimization plot showing the optimum value for maximum extracellular amylase (AmyBS-I) production from E. coli BL21 cells.

Figure 4.42: Elution profile of recombinant α-amylase (BSAMY) from E. coli BL21 cells on phenyl-sepharose column.

Figure 4.43: Elution profile of recombinant α-amylase (AmyBS-I) on Sephacryl S-200 column.

Figure 4.44: SDS-PAGE analysis of purified AmyBS-I.

Figure 4.45: Graphs showing pH dependence of α-amylase activity of AmyBS-I.
Figure 4.46: Graphs showing temperature profile for the amylase activity of recombinant enzyme AmyBS-I.

Figure 4.47: Effect of temperature on stability of purified recombinant enzyme (AmyBS-I) both in presence (■) and in absence (●) of (5 mM) Ca²⁺ ion.

Figure 4.48: Lineweaver-Burk plot to determine K_m and V_{max} values of AmyBS-I.

Figure 4.49: TLC analysis of end product of starch hydrolysis by AmyBS-I.

Figure 4.50: SEM images of raw starch granules before and after hydrolysis with AmyBS-I for 6h.

Figure 4.51: Crumb structure of loaf prepared without supplementation (control) or supplementation with Himedia or AmyBS-I enzyme.

Figure 4.52: Effect of commercial enzyme (Himedia) and AmyBS-I supplementation on bread staling.

Figure 4.53: Magnetic properties of the MNPs towards the permanent magnet.

Figure 4.54: XRD spectra of (A) enzyme bound on functionalized MNPs, (B) functionalized MNPs and (C) non-functionalized MNPs.

Figure 4.55: FT-IR spectra of functionalized magnetic nanoparticles.

Figure 4.56: FT-IR spectra of functionalized MNPs-bound α-amylase.

Figure 4.57: Starch hydrolysis by iron-oxide MNP-bound α-amylase at different time intervals.

Chapter 5: Results (B. licheniformis strain AS08E)

Figure 5.1: Plates showing halo zone formation on starch agar plates by extracellular α-amylase producing strain AS08E isolated from soil sample obtained from Sivasagar district of Assam, India.

Figure 5.2: Differential staining of the extracellular α-amylase producing strain AS08E.

Figure 5.3: Biochemical characterization of the isolated strain AS08E.

Figure 5.4: Agarose gel analysis of genomic DNA and PCR-amplified 16S rDNA from strain AS08E.

Figure 5.5: Phylogenetic relationships of strain AS08E and other closely related Bacillus species based on 16S rDNA sequencing.

Figure 5.6: Agarose gel analysis of PCR-amplified gyrase-A gene from Bacillus sp. strain AS08E.

Figure 5.7: Evolutionary relationships of strain AS08E and other closely related B. licheniformis based on gyrase A gene sequence considering E. coli as an out-group.
Figure 5.8: Agarose gel analysis of PCR-amplified RpoB gene from the Bacillus sp. strain AS08E

Figure 5.9: Evolutionary relationships of strain AS08E and other closely related Bacillus species based on RNA polymerase B gene sequencing.

Figure 5.10: Agarose gel analysis of PCR-amplified 16S-23S ISR region from strain AS08E.

Figure 5.11: Evolutionary relationships of strain AS08E and other closely related Bacillus species based on 16S-23S ISR sequence by neighbor-joining method.

Figure 5.12: Growth kinetics and enzyme production of B. licheniformis strain AS08E under SmF.

Figure 5.13: Pareto plot showing the significant factors influencing alkaline α-amylase production by B. licheniformis strain AS08E.

Figure 5.14: Normal plot showing the significant factors influencing alkaline α-amylase production by B. licheniformis strain AS08E.

Figure 5.15: Response surface plots for alkaline α-amylase production by B. licheniformis strain AS08E.

Figure 5.16: Contour plots showing interaction effect of test variables on alkaline α-amylase production from B. licheniformis strain AS08E.

Figure 5.17: Optimization plot showing the optimum value for maximum thermostable α-amylase production from B. licheniformis strain AS08E.

Figure 5.18: Elution profile of alkaline α-amylase from B. licheniformis strain AS08E cells on phenyl-sepharose column.

Figure 5.19: Elution profile of alkaline α-amylase (AmyBL-I) from B. licheniformis strain AS08E cells on Sephacryl S-200 column.

Figure 5.20: SDS-PAGE analysis of purified α-amylase from B. licheniformis strain AS08E.

Figure 5.21: Determination of optimum pH and temperature for activity of AmyBL-I from B. licheniformis strain AS08E.

Figure 5.22: Effect of temperature on stability of AmyBL-I in the presence (■) and in absence (▲) of Ca²⁺ ion (5 mM final conc.).

Figure 5.23: Lineweaver-Burk plot used to determination of \(K_m \) and \(V_{max} \) values for hydrolysis of starch by AmyBL-I.

Figure 5.24: Effect of various metal ions on α-amylase activity of AmyBL-I.

Figure 5.25: Multiple sequence alignment of the AmyBL-I N-terminal sequence and other closely related α-amylase sequences from NCBI database.

Figure 5.26: Starch binding by of AmyBL-I monitored using fluorescence spectroscopy.
Figure 5.27: A comparison of detergent stability and compatibility of alkaline AmyBL-I with commercial α-amylases.

Figure 5.28: Wash performance analysis of AmyBL-I on chocolate-stained fabrics.

Figure 5.29: Desizing activity of AmyBL-I on starchy cloths.

Figure 5.30: TLC analysis of raw potato and wheat starch hydrolysis by AmyBL-I.

Figure 5.31: Scanning electron microscopic (SEM) photographs of AmyBL-I treated and untreated raw potato and wheat starches.

Figure 5.32: Agarose gel electrophoresis analysis of genomic DNA from B. licheniformis strain AS08E and amplification of its α-amylase gene using the primers BLF1 and BLR2.

Figure 5.33: Cloning of PCR-amplified α-amylase gene from B. licheniformis strain AS08E into pJET1.2 cloning vector.

Figure 5.34: Agarose gel electrophoresis analysis of amplified α-amylase gene from strain AS08E using primers BLF3 and BLR4.

Figure 5.35: Transformed E. coli BL21a cell containing pET28a alone (a) and recombinant pET28a vector (b) containing α-amylase gene insert from AS08E.

Figure 5.36: Agarose gel electrophoresis analysis of recombinant plasmid (pETBLA 2) by restriction digestion and PCR amplification.

Figure 5.37: Multiple sequence alignment of Blamy-I with homologous α-amylase sequences.

Figure 5.38: Analysis of extracellular expression of Blamy-I E. coli.

Figure 5.39: SDS-PAGE analysis of extracellular expression of recombinant Blamy-I in E. coli.

Figure 5.40: Response surface plots showing interaction effects of test variables on extracellular overexpression of Blamy-I from E. coli BL21 cells.

Figure 5.41: Chromatogram resulting from fractionation of recombinant Blamy-I on a phenyl-sepharose column.

Figure 5.42: Chromatogram resulting from fractionation of recombinant α-amylase (Blamy-I) on a Sephacryl S-200 column.

Figure 5.43: SDS-PAGE analysis of purified Blamy-I.