CONCLUSION

The present study highlights the potential of AgNps to eradicate *E. faecalis* from the root canals and its use as an intracanal medicament. Scanning Electron microscope and Propidium iodide uptake assay showed the presence of pits and surface morphology alterations in *E. faecalis* when treated with AgNps. The AgNps mixed with thermosensitive agents followed by ultrasonic agitation increased the antibacterial efficacy of AgNps. The AgNps showed lesser percentage of haemolysis compared to CHX. The use of AgNps as an intracanal medicament had no influence on the microhardness to root dentin. Further studies could be done to study the role of change in the surface characteristics and size of AgNps on *E. faecalis* and to evaluate the antibacterial efficacy of various metal nanoparticles against *E. faecalis*. 