<table>
<thead>
<tr>
<th>Figure</th>
<th>Caption</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Physical model and coordinate system</td>
<td>18</td>
</tr>
<tr>
<td>2.2 (a)</td>
<td>Velocity distribution for different λ ($R = 1, \sigma = 0$)</td>
<td>29</td>
</tr>
<tr>
<td>2.2 (b)</td>
<td>Velocity distribution for different λ ($R = 1, \sigma = 0.5$)</td>
<td>30</td>
</tr>
<tr>
<td>2.2 (c)</td>
<td>Velocity distribution for different λ ($R = 1, \sigma = 1$)</td>
<td>31</td>
</tr>
<tr>
<td>2.2 (d)</td>
<td>Velocity distribution for different λ ($R = 1, \sigma = 2$)</td>
<td>32</td>
</tr>
<tr>
<td>2.2 (e)</td>
<td>Velocity distribution for different λ ($R = 1, \sigma = 3$)</td>
<td>33</td>
</tr>
<tr>
<td>2.2 (f)</td>
<td>Velocity distribution for different λ ($R = 1, \sigma = 5$)</td>
<td>34</td>
</tr>
<tr>
<td>2.3</td>
<td>Microrotation distribution for different λ ($R = 1, \sigma = 5$)</td>
<td>35</td>
</tr>
<tr>
<td>2.4</td>
<td>Temperature distribution for different λ ($R = 1, \sigma = 5$)</td>
<td>36</td>
</tr>
<tr>
<td>2.5</td>
<td>Velocity distribution for different R ($\lambda = 3, \sigma = 5$)</td>
<td>37</td>
</tr>
<tr>
<td>2.6</td>
<td>Microrotation distribution for different R ($\lambda = 3, \sigma = 5$)</td>
<td>38</td>
</tr>
<tr>
<td>2.7</td>
<td>Temperature distribution for different R ($\lambda = 3, \sigma = 5$)</td>
<td>39</td>
</tr>
<tr>
<td>2.8</td>
<td>Velocity distribution for different σ ($\lambda = 3, R = 1$)</td>
<td>40</td>
</tr>
<tr>
<td>2.9</td>
<td>Microrotation distribution for different σ ($\lambda = 3, R = 1$)</td>
<td>41</td>
</tr>
<tr>
<td>2.10</td>
<td>Temperature distribution for different σ ($\lambda = 3, R = 1$)</td>
<td>42</td>
</tr>
<tr>
<td>3.1</td>
<td>Physical model and coordinate system</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Velocity distribution for different λ ($c = 1, M = 3, n = 0.5$)</td>
<td>56</td>
</tr>
<tr>
<td>3.3</td>
<td>Microrotation distribution for different λ ($c = 1, M = 3, n = 0.5$)</td>
<td>57</td>
</tr>
<tr>
<td>3.4</td>
<td>Temperature distribution for different λ ($c = 1, M = 3, n = 0.5$)</td>
<td>58</td>
</tr>
<tr>
<td>3.5</td>
<td>Velocity distribution for different c ($\lambda = 3.5, M = 3, n = 0.5$)</td>
<td>59</td>
</tr>
<tr>
<td>3.6</td>
<td>Microrotation distribution for different c ($\lambda = 3.5, M = 3, n = 0.5$)</td>
<td>60</td>
</tr>
<tr>
<td>3.7</td>
<td>Temperature distribution for different c ($\lambda = 3.5, M = 3, n = 0.5$)</td>
<td>61</td>
</tr>
<tr>
<td>3.8</td>
<td>Velocity distribution for different M ($\lambda = 3.5, c = 1, n = 0.5$)</td>
<td>62</td>
</tr>
<tr>
<td>3.9</td>
<td>Microrotation distribution for different M ($\lambda = 3.5, c = 1, n = 0.5$)</td>
<td>63</td>
</tr>
<tr>
<td>3.10</td>
<td>Temperature distribution for different M ($\lambda = 3.5, c = 1, n = 0.5$)</td>
<td>64</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>3.11</td>
<td>Velocity distribution for different $n (\lambda = 3.5, c = 1, M = 3)$</td>
<td>65</td>
</tr>
<tr>
<td>3.12</td>
<td>Microrotation distribution for different $n (\lambda = 3.5, c = 1, M = 3)$</td>
<td>66</td>
</tr>
<tr>
<td>3.13</td>
<td>Temperature distribution for different $n (\lambda = 3.5, c = 1, M = 3)$</td>
<td>67</td>
</tr>
<tr>
<td>4.1</td>
<td>Velocity distribution for different $M (\varepsilon = -0.5, Me = 1)$</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>Microrotation distribution for different $M (\varepsilon = -0.5, Me = 1)$</td>
<td>82</td>
</tr>
<tr>
<td>4.3</td>
<td>Temperature distribution for different $M (\varepsilon = -0.5, Me = 1)$</td>
<td>83</td>
</tr>
<tr>
<td>4.4</td>
<td>Velocity distribution for different $\varepsilon (M = 3, Me = 1)$</td>
<td>84</td>
</tr>
<tr>
<td>4.5</td>
<td>Microrotation distribution for different $\varepsilon (M = 3, Me = 1)$</td>
<td>85</td>
</tr>
<tr>
<td>4.6</td>
<td>Temperature distribution for different $\varepsilon (M = 3, Me = 1)$</td>
<td>86</td>
</tr>
<tr>
<td>4.7</td>
<td>Velocity distribution for different $Me (M = 3, \varepsilon = -0.5)$</td>
<td>87</td>
</tr>
<tr>
<td>4.8</td>
<td>Microrotation distribution for different $Me (M = 3, \varepsilon = -0.5)$</td>
<td>88</td>
</tr>
<tr>
<td>4.9</td>
<td>Temperature distribution for different $Me (M = 3, \varepsilon = -0.5)$</td>
<td>89</td>
</tr>
<tr>
<td>4.10</td>
<td>Streamlines for $Me = 1, M = 3$ and (a) $\varepsilon = -0.5$ (b) $\varepsilon = 0.5$</td>
<td>90</td>
</tr>
<tr>
<td>4.11</td>
<td>Streamlines for $Me = 0, M = 3$ and (a) $\varepsilon = -0.5$ (b) $\varepsilon = 0.5$</td>
<td>90</td>
</tr>
<tr>
<td>5.1</td>
<td>Physical model and the coordinate system</td>
<td>94</td>
</tr>
<tr>
<td>5.2</td>
<td>Velocity distribution for different $\sigma (M = 4, \lambda = -2)$</td>
<td>104</td>
</tr>
<tr>
<td>5.3</td>
<td>Microrotation distribution for different $\sigma (M = 4, \lambda = -2)$</td>
<td>105</td>
</tr>
<tr>
<td>5.4</td>
<td>Temperature distribution for different $\sigma (M = 4, \lambda = -2)$</td>
<td>106</td>
</tr>
<tr>
<td>5.5</td>
<td>Velocity distribution for different $M (\sigma = 5, \lambda = -2)$</td>
<td>107</td>
</tr>
<tr>
<td>5.6</td>
<td>Microrotation distribution for different $M (\sigma = 5, \lambda = -2)$</td>
<td>108</td>
</tr>
<tr>
<td>5.7</td>
<td>Temperature distribution for different $M (\sigma = 5, \lambda = -2)$</td>
<td>109</td>
</tr>
<tr>
<td>5.8</td>
<td>Velocity distribution for different $\lambda (\sigma = 5, M = 4)$</td>
<td>110</td>
</tr>
<tr>
<td>5.9</td>
<td>Microrotation distribution for different $\lambda (\sigma = 5, M = 4)$</td>
<td>111</td>
</tr>
<tr>
<td>5.10</td>
<td>Temperature distribution for different $\lambda (\sigma = 5, M = 4)$</td>
<td>112</td>
</tr>
<tr>
<td>6.1</td>
<td>Physical model and coordinate system</td>
<td>116</td>
</tr>
<tr>
<td>6.2</td>
<td>Velocity distribution for different $\lambda (\sigma = 1, R = 1, Ec = 0.02)$</td>
<td>128</td>
</tr>
<tr>
<td>6.3</td>
<td>Microrotation distribution for different $\lambda (\sigma = 1, R = 1, Ec = 0.02)$</td>
<td>129</td>
</tr>
<tr>
<td>6.4</td>
<td>Temperature distribution for different $\lambda (\sigma = 1, R = 1, Ec = 0.02)$</td>
<td>130</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (Cont…)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>Velocity distribution for different σ ($R = 1, Ec = 0.02$)</td>
<td>131</td>
</tr>
<tr>
<td>6.6</td>
<td>Microrotation distribution for different σ ($R = 1, Ec = 0.02$)</td>
<td>132</td>
</tr>
<tr>
<td>6.7</td>
<td>Temperature distribution for different σ ($R = 1, Ec = 0.02$)</td>
<td>133</td>
</tr>
<tr>
<td>6.8</td>
<td>Velocity distribution for different R ($\sigma = 1, Ec = 0.02$)</td>
<td>134</td>
</tr>
<tr>
<td>6.9</td>
<td>Microrotation distribution for different R ($\sigma = 1, Ec = 0.02$)</td>
<td>135</td>
</tr>
<tr>
<td>6.10</td>
<td>Temperature distribution for different R ($\sigma = 1, Ec = 0.02$)</td>
<td>136</td>
</tr>
<tr>
<td>6.11</td>
<td>Velocity distribution for different Ec ($\sigma = 1, R = 1$)</td>
<td>137</td>
</tr>
<tr>
<td>6.12</td>
<td>Microrotation distribution for different Ec ($\sigma = 1, R = 1$)</td>
<td>138</td>
</tr>
<tr>
<td>6.13</td>
<td>Temperature distribution for different Ec ($\sigma = 1, R = 1$)</td>
<td>139</td>
</tr>
<tr>
<td>7.1</td>
<td>Physical model and coordinate system</td>
<td>143</td>
</tr>
<tr>
<td>7.2</td>
<td>Velocity distribution for different λ ($\tau = 1, \sigma = 3, Ec = 0.75$)</td>
<td>152</td>
</tr>
<tr>
<td>7.3</td>
<td>Microrotation distribution for different λ ($\tau = 1, \sigma = 3, Ec = 0.75$)</td>
<td>153</td>
</tr>
<tr>
<td>7.4</td>
<td>Temperature distribution for different λ ($\tau = 1, \sigma = 3, Ec = 0.75$)</td>
<td>154</td>
</tr>
<tr>
<td>7.5</td>
<td>Velocity distribution for different τ ($\lambda = 3, \sigma = 3, Ec = 0.75$)</td>
<td>155</td>
</tr>
<tr>
<td>7.6</td>
<td>Microrotation distribution for different τ ($\lambda = 3, \sigma = 3, Ec = 0.75$)</td>
<td>156</td>
</tr>
<tr>
<td>7.7</td>
<td>Temperature distribution for different τ ($\lambda = 3, \sigma = 3, Ec = 0.75$)</td>
<td>157</td>
</tr>
<tr>
<td>7.8</td>
<td>Velocity distribution for different σ ($\lambda = 3, \tau = 1, Ec = 0.75$)</td>
<td>158</td>
</tr>
<tr>
<td>7.9</td>
<td>Microrotation distribution for different σ ($\lambda = 3, \tau = 1, Ec = 0.75$)</td>
<td>159</td>
</tr>
<tr>
<td>7.10</td>
<td>Temperature distribution for different σ ($\lambda = 3, \tau = 1, Ec = 0.75$)</td>
<td>160</td>
</tr>
<tr>
<td>7.11</td>
<td>Velocity distribution for different Ec ($\lambda = 3, \tau = 1, \sigma = 3$)</td>
<td>161</td>
</tr>
<tr>
<td>7.12</td>
<td>Microrotation distribution for different Ec ($\lambda = 3, \tau = 1, \sigma = 3$)</td>
<td>162</td>
</tr>
<tr>
<td>7.13</td>
<td>Temperature distribution for different Ec ($\lambda = 3, \tau = 1, \sigma = 3$)</td>
<td>163</td>
</tr>
<tr>
<td>8.1</td>
<td>Physical model and coordinate system</td>
<td>167</td>
</tr>
<tr>
<td>8.2</td>
<td>Velocity distribution for different λ ($\tau = 2, K = 2, Sc = 0.25$)</td>
<td>179</td>
</tr>
<tr>
<td>8.3</td>
<td>Microrotation distribution for different λ ($\tau = 2, K = 2, Sc = 0.25$)</td>
<td>180</td>
</tr>
<tr>
<td>8.4</td>
<td>Temperature distribution for different λ ($\tau = 2, K = 2, Sc = 0.25$)</td>
<td>181</td>
</tr>
<tr>
<td>8.5</td>
<td>Concentration distribution for different λ ($\tau = 2, K = 2, Sc = 0.25$)</td>
<td>182</td>
</tr>
<tr>
<td>8.6</td>
<td>Velocity distribution for different τ ($\lambda = -1, K = 2, Sc = 0.25$)</td>
<td>183</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (Cont…)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7</td>
<td>Microrotation distribution for different τ ($\lambda = -1, K = 2, Sc = 0.25$)</td>
<td>184</td>
</tr>
<tr>
<td>8.8</td>
<td>Temperature distribution for different τ ($\lambda = -1, K = 2, Sc = 0.25$)</td>
<td>185</td>
</tr>
<tr>
<td>8.9</td>
<td>Concentration distribution for different τ ($\lambda = -1, K = 2, Sc = 0.25$)</td>
<td>186</td>
</tr>
<tr>
<td>8.10</td>
<td>Velocity distribution for different K ($\lambda = -1, \tau = 2, Sc = 0.25$)</td>
<td>187</td>
</tr>
<tr>
<td>8.11</td>
<td>Microrotation distribution for different K ($\lambda = -1, \tau = 2, Sc = 0.25$)</td>
<td>188</td>
</tr>
<tr>
<td>8.12</td>
<td>Temperature distribution for different K ($\lambda = -1, \tau = 2, Sc = 0.25$)</td>
<td>189</td>
</tr>
<tr>
<td>8.13</td>
<td>Concentration distribution for different K ($\lambda = -1, \tau = 2, Sc = 0.25$)</td>
<td>190</td>
</tr>
<tr>
<td>8.14</td>
<td>Concentration distribution for different Sc ($\lambda = -1, \tau = 2, K = 2$)</td>
<td>191</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Caption</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 (a)</td>
<td>Convergence of results with the variation of number of elements ((K = 1, \text{Pr} = 1, \lambda = 3, R = 1, \sigma = 5))</td>
<td>24</td>
</tr>
<tr>
<td>2.1 (b)</td>
<td>Comparison of the flow velocity (f'(\eta)) obtained by analytical method and FEM ((K = 0, \sigma = 0, \lambda = 3, \text{Pr} = 1, R = 1))</td>
<td>24</td>
</tr>
<tr>
<td>2.2 (a)</td>
<td>Velocity distribution for different (\lambda) ((R = 1, \sigma = 0))</td>
<td>29</td>
</tr>
<tr>
<td>2.2 (b)</td>
<td>Velocity distribution for different (\lambda) ((R = 1, \sigma = 0.5))</td>
<td>30</td>
</tr>
<tr>
<td>2.2 (c)</td>
<td>Velocity distribution for different (\lambda) ((R = 1, \sigma = 1))</td>
<td>31</td>
</tr>
<tr>
<td>2.2 (d)</td>
<td>Velocity distribution for different (\lambda) ((R = 1, \sigma = 2))</td>
<td>32</td>
</tr>
<tr>
<td>2.2 (e)</td>
<td>Velocity distribution for different (\lambda) ((R = 1, \sigma = 3))</td>
<td>33</td>
</tr>
<tr>
<td>2.2 (f)</td>
<td>Velocity distribution for different (\lambda) ((R = 1, \sigma = 5))</td>
<td>34</td>
</tr>
<tr>
<td>2.3</td>
<td>Microrotation distribution for different (\lambda) ((R = 1, \sigma = 5))</td>
<td>35</td>
</tr>
<tr>
<td>2.4</td>
<td>Temperature distribution for different (\lambda) ((R = 1, \sigma = 5))</td>
<td>36</td>
</tr>
<tr>
<td>2.5</td>
<td>Velocity distribution for different (R) ((\lambda = 3, \sigma = 5))</td>
<td>37</td>
</tr>
<tr>
<td>2.6</td>
<td>Microrotation distribution for different (R) ((\lambda = 3, \sigma = 5))</td>
<td>38</td>
</tr>
<tr>
<td>2.7</td>
<td>Temperature distribution for different (R) ((\lambda = 3, \sigma = 5))</td>
<td>39</td>
</tr>
<tr>
<td>2.8</td>
<td>Velocity distribution for different (\sigma) ((\lambda = 3, R = 1))</td>
<td>40</td>
</tr>
<tr>
<td>2.9</td>
<td>Microrotation distribution for different (\sigma) ((\lambda = 3, R = 1))</td>
<td>41</td>
</tr>
<tr>
<td>2.10</td>
<td>Temperature distribution for different (\sigma) ((\lambda = 3, R = 1))</td>
<td>42</td>
</tr>
<tr>
<td>2.11</td>
<td>The skin friction coefficient ({f''(0)}) for different values of (\lambda, R) and (\sigma) ((\text{Pr} = 1, K = 1))</td>
<td>43</td>
</tr>
</tbody>
</table>
LIST OF TABLES (Cont…)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.12</td>
<td>The local couple stress {g'(0)} for different values of (\lambda, R) and (\sigma) ((\Pr = 1, K = 1))</td>
<td>43</td>
</tr>
<tr>
<td>2.13</td>
<td>The local Nusselt number {1/\theta (0)} for different values of (\lambda, R) and (\sigma) ((\Pr = 1, K = 1))</td>
<td>43</td>
</tr>
<tr>
<td>3.1 (a)</td>
<td>Convergence of results with the variation of number of elements ((K = 1, \Pr = 0.733, \sigma = 5, \lambda = 3.5, c = 1, M = 3, n = 0.5))</td>
<td>51</td>
</tr>
<tr>
<td>3.1 (b)</td>
<td>Comparison of the analytical method and FEM ((K = 0, \Pr = 0.733, \sigma = 0, \lambda = 3, c = 1, M = 1, n = 1))</td>
<td>52</td>
</tr>
<tr>
<td>3.2</td>
<td>Velocity distribution for different (\lambda) ((c = 1, M = 3, n = 0.5))</td>
<td>56</td>
</tr>
<tr>
<td>3.3</td>
<td>Microrotation distribution for different (\lambda) ((c = 1, M = 3, n = 0.5))</td>
<td>57</td>
</tr>
<tr>
<td>3.4</td>
<td>Temperature distribution for different (\lambda) ((c = 1, M = 3, n = 0.5))</td>
<td>58</td>
</tr>
<tr>
<td>3.5</td>
<td>Velocity distribution for different (c) ((\lambda = 3.5, M = 3, n = 0.5))</td>
<td>59</td>
</tr>
<tr>
<td>3.6</td>
<td>Microrotation distribution for different (c) ((\lambda = 3.5, M = 3, n = 0.5))</td>
<td>60</td>
</tr>
<tr>
<td>3.7</td>
<td>Temperature distribution for different (c) ((\lambda = 3.5, M = 3, n = 0.5))</td>
<td>61</td>
</tr>
<tr>
<td>3.8</td>
<td>Velocity distribution for different (M) ((\lambda = 3.5, c = 1, n = 0.5))</td>
<td>62</td>
</tr>
<tr>
<td>3.9</td>
<td>Microrotation distribution for different (M) ((\lambda = 3.5, c = 1, n = 0.5))</td>
<td>63</td>
</tr>
<tr>
<td>3.10</td>
<td>Temperature distribution for different (M) ((\lambda = 3.5, c = 1, n = 0.5))</td>
<td>64</td>
</tr>
<tr>
<td>3.11</td>
<td>Velocity distribution for different (n) ((\lambda = 3.5, c = 1, M = 3))</td>
<td>65</td>
</tr>
<tr>
<td>3.12</td>
<td>Microrotation distribution for different (n) ((\lambda = 3.5, c = 1, M = 3))</td>
<td>66</td>
</tr>
<tr>
<td>3.13</td>
<td>Temperature distribution for different (n) ((\lambda = 3.5, c = 1, M = 3))</td>
<td>67</td>
</tr>
<tr>
<td>3.14</td>
<td>The skin friction coefficient {f''(0)} for different values of (\lambda, c, M) and (n) ((K = 1, \Pr = 0.733, \sigma = 5))</td>
<td>68</td>
</tr>
<tr>
<td>3.15</td>
<td>The local couple stress {g'(0)} for different values of (\lambda, c, M) and (n) ((K = 1, \Pr = 0.733, \sigma = 5))</td>
<td>68</td>
</tr>
</tbody>
</table>
LIST OF TABLES (Cont…)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.16</td>
<td>The heat transfer rate {-\theta'(0)} for different values of (\lambda, c, M) and (n) ((K = 1, Pr = 0.733, \sigma = 5))</td>
<td>68</td>
</tr>
<tr>
<td>4.1 (a)</td>
<td>Convergence of results with the variation of number of elements ((K = 1, M = 3, A = 1, C = 1, Pr = 0.733, Ec = 0.02, \varepsilon = -0.5, Me = 1))</td>
<td>75</td>
</tr>
<tr>
<td>4.1 (b)</td>
<td>Comparison of (f^*(0)) for different values of (\varepsilon) ((K = 0, M = 0, Ec = 0, Me = 0))</td>
<td>75</td>
</tr>
<tr>
<td>4.1 (c)</td>
<td>Comparison of {-\theta'(0)} for different values of (\varepsilon) ((K = 0, M = 0, Ec = 0, Me = 0))</td>
<td>76</td>
</tr>
<tr>
<td>4.2</td>
<td>Velocity distribution for different (M) ((\varepsilon = -0.5, Me = 1))</td>
<td>81</td>
</tr>
<tr>
<td>4.3</td>
<td>Microrotation distribution for different (M) ((\varepsilon = -0.5, Me = 1))</td>
<td>82</td>
</tr>
<tr>
<td>4.4</td>
<td>Temperature distribution for different (M) ((\varepsilon = -0.5, Me = 1))</td>
<td>83</td>
</tr>
<tr>
<td>4.5</td>
<td>Velocity distribution for different (\varepsilon) ((M = 3, Me = 1))</td>
<td>84</td>
</tr>
<tr>
<td>4.6</td>
<td>Microrotation distribution for different (\varepsilon) ((M = 3, Me = 1))</td>
<td>85</td>
</tr>
<tr>
<td>4.7</td>
<td>Temperature distribution for different (\varepsilon) ((M = 3, Me = 1))</td>
<td>86</td>
</tr>
<tr>
<td>4.8</td>
<td>Velocity distribution for different (Me) ((M = 3, \varepsilon = -0.5))</td>
<td>87</td>
</tr>
<tr>
<td>4.9</td>
<td>Microrotation distribution for different (Me) ((M = 3, \varepsilon = -0.5))</td>
<td>88</td>
</tr>
<tr>
<td>4.10</td>
<td>Temperature distribution for different (Me) ((M = 3, \varepsilon = -0.5))</td>
<td>89</td>
</tr>
<tr>
<td>4.11</td>
<td>The skin friction coefficient ({f^*(0)}) for different values of (M, \varepsilon) and (Me) ((K = 1, A = 1, C = 1, Pr = 0.733, Ec = 0.02))</td>
<td>91</td>
</tr>
<tr>
<td>4.12</td>
<td>The local couple stress ({g'(0)}) for different values of (M, \varepsilon) and (Me) ((K = 1, A = 1, C = 1, Pr = 0.733, Ec = 0.02))</td>
<td>91</td>
</tr>
<tr>
<td>4.13</td>
<td>The local Nusselt number {-\theta'(0)} for different values of (M, \varepsilon) and (Me) ((K = 1, A = 1, C = 1, Pr = 0.733, Ec = 0.02))</td>
<td>91</td>
</tr>
<tr>
<td>5.1 (a)</td>
<td>Convergence of results with the variation of number of elements ((K = 1, Pr = 0.733, M = 4, \sigma = 5, \lambda = -2))</td>
<td>98</td>
</tr>
</tbody>
</table>
LIST OF TABLES (Cont…)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 (b)</td>
<td>Values of (f'(0)) for different values of (K (\Pr = 1, M = 0, \lambda = 0))</td>
<td>98</td>
</tr>
<tr>
<td>5.1 (c)</td>
<td>Values of (-\theta'(0)) for different values of (K (\Pr = 1, M = 0, \lambda = 0))</td>
<td>99</td>
</tr>
<tr>
<td>5.2</td>
<td>Velocity distribution for different (\sigma (M = 4, \lambda = -2))</td>
<td>104</td>
</tr>
<tr>
<td>5.3</td>
<td>Microrotation distribution for different (\sigma (M = 4, \lambda = -2))</td>
<td>105</td>
</tr>
<tr>
<td>5.4</td>
<td>Temperature distribution for different (\sigma (M = 4, \lambda = -2))</td>
<td>106</td>
</tr>
<tr>
<td>5.5</td>
<td>Velocity distribution for different (M (\sigma = 5, \lambda = -2))</td>
<td>107</td>
</tr>
<tr>
<td>5.6</td>
<td>Microrotation distribution for different (M (\sigma = 5, \lambda = -2))</td>
<td>108</td>
</tr>
<tr>
<td>5.7</td>
<td>Temperature distribution for different (M (\sigma = 5, \lambda = -2))</td>
<td>109</td>
</tr>
<tr>
<td>5.8</td>
<td>Velocity distribution for different (\lambda (\sigma = 5, M = 4))</td>
<td>110</td>
</tr>
<tr>
<td>5.9</td>
<td>Microrotation distribution for different (\lambda (\sigma = 5, M = 4))</td>
<td>111</td>
</tr>
<tr>
<td>5.10</td>
<td>Temperature distribution for different (\lambda (\sigma = 5, M = 4))</td>
<td>112</td>
</tr>
<tr>
<td>5.11</td>
<td>The local couple stress (g'(0)) for different values of (\sigma, M) and (\lambda) ((K = 1, \Pr = 0.733))</td>
<td>113</td>
</tr>
<tr>
<td>5.12</td>
<td>The local Nusselt number (-\theta'(0)) for different values of (\sigma, M) and (\lambda) ((K = 1, \Pr = 0.733))</td>
<td>113</td>
</tr>
<tr>
<td>6.1 (a)</td>
<td>Convergence of results ((\lambda = 0.3, Ec = 0.02, K = 0.02, \Delta = 2, \Pr = 0.733, \sigma = 0.25))</td>
<td>122</td>
</tr>
<tr>
<td>6.1 (b)</td>
<td>Comparison of (f''(0)), (g'(0)) and (-\theta'(0)) for different values of (\lambda) ((Ec = 0.02, K = 0.2, \Delta = 2, \Pr = 0.733, R = 0.1, \sigma = 0))</td>
<td>122</td>
</tr>
<tr>
<td>6.2</td>
<td>Velocity distribution for different (\lambda (\sigma = 1, R = 1, Ec = 0.02))</td>
<td>128</td>
</tr>
<tr>
<td>6.3</td>
<td>Microrotation distribution for different (\lambda (\sigma = 1, R = 1, Ec = 0.02))</td>
<td>129</td>
</tr>
<tr>
<td>6.4</td>
<td>Temperature distribution for different (\lambda (\sigma = 1, R = 1, Ec = 0.02))</td>
<td>130</td>
</tr>
<tr>
<td>6.5</td>
<td>Velocity distribution for different (\sigma (R = 1, Ec = 0.02))</td>
<td>131</td>
</tr>
<tr>
<td>Table</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6.6</td>
<td>Microrotation distribution for different σ ($R = 1, Ec = 0.02$)</td>
<td>132</td>
</tr>
<tr>
<td>6.7</td>
<td>Temperature distribution for different σ ($R = 1, Ec = 0.02$)</td>
<td>133</td>
</tr>
<tr>
<td>6.8</td>
<td>Velocity distribution for different R ($\sigma = 1, Ec = 0.02$)</td>
<td>134</td>
</tr>
<tr>
<td>6.9</td>
<td>Microrotation distribution for different R ($\sigma = 1, Ec = 0.02$)</td>
<td>135</td>
</tr>
<tr>
<td>6.10</td>
<td>Temperature distribution for different R ($\sigma = 1, Ec = 0.02$)</td>
<td>136</td>
</tr>
<tr>
<td>6.11</td>
<td>Velocity distribution for different Ec ($\sigma = 1, R = 1$)</td>
<td>137</td>
</tr>
<tr>
<td>6.12</td>
<td>Microrotation distribution for different Ec ($\sigma = 1, R = 1$)</td>
<td>138</td>
</tr>
<tr>
<td>6.13</td>
<td>Temperature distribution for different Ec ($\sigma = 1, R = 1$)</td>
<td>139</td>
</tr>
<tr>
<td>6.14</td>
<td>Skin friction at sheet surface ${f'(0)}$ for different values of σ, R and Ec for both suction and injection ($\Delta = 2.0, K = 0.02, Pr = 0.733$)</td>
<td>140</td>
</tr>
<tr>
<td>6.15</td>
<td>The local couple stress ${g'(0)}$ for different values of σ, R and Ec for both suction and injection ($\Delta = 2.0, K = 0.02, Pr = 0.733$)</td>
<td>140</td>
</tr>
<tr>
<td>6.16</td>
<td>Heat transfer rate at sheet surface $(-\theta'(0))$ for different values of σ, R and Ec for both suction and injection ($\Delta = 2.0, K = 0.02, Pr = 0.733$)</td>
<td>140</td>
</tr>
<tr>
<td>7.1</td>
<td>Convergence of results with the variation of number of elements ($K = 2, Pr = 0.733, \lambda = 3, \tau = 1, \sigma = 3, Ec = 0.75$)</td>
<td>147</td>
</tr>
<tr>
<td>7.1 (b)</td>
<td>Comparison of the flow velocity $f'(\eta)$ obtained by analytical method [77] and FEM ($K = 0, Pr = 0.733, \lambda = 3, \tau = 0, \sigma = 0, Ec = 0$)</td>
<td>148</td>
</tr>
<tr>
<td>7.2</td>
<td>Velocity distribution for different λ ($\tau = 1, \sigma = 3, Ec = 0.75$)</td>
<td>152</td>
</tr>
<tr>
<td>7.3</td>
<td>Microrotation distribution for different λ ($\tau = 1, \sigma = 3, Ec = 0.75$)</td>
<td>153</td>
</tr>
<tr>
<td>7.4</td>
<td>Temperature distribution for different λ ($\tau = 1, \sigma = 3, Ec = 0.75$)</td>
<td>154</td>
</tr>
<tr>
<td>7.5</td>
<td>Velocity distribution for different τ ($\lambda = 3, \sigma = 3, Ec = 0.75$)</td>
<td>155</td>
</tr>
<tr>
<td>7.6</td>
<td>Microrotation distribution for different τ ($\lambda = 3, \sigma = 3, Ec = 0.75$)</td>
<td>156</td>
</tr>
</tbody>
</table>
LIST OF TABLES (Cont…)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7</td>
<td>Temperature distribution for different τ ($\lambda = 3, \sigma = 3, Ec = 0.75$)</td>
<td>157</td>
</tr>
<tr>
<td>7.8</td>
<td>Velocity distribution for different σ ($\lambda = 3, \tau = 1, Ec = 0.75$)</td>
<td>158</td>
</tr>
<tr>
<td>7.9</td>
<td>Microrotation distribution for different σ ($\lambda = 3, \tau = 1, Ec = 0.75$)</td>
<td>159</td>
</tr>
<tr>
<td>7.10</td>
<td>Temperature distribution for different σ ($\lambda = 3, \tau = 1, Ec = 0.75$)</td>
<td>160</td>
</tr>
<tr>
<td>7.11</td>
<td>Velocity distribution for different Ec ($\lambda = 3, \tau = 1, \sigma = 3$)</td>
<td>161</td>
</tr>
<tr>
<td>7.12</td>
<td>Microrotation distribution for different Ec ($\lambda = 3, \tau = 1, \sigma = 3$)</td>
<td>162</td>
</tr>
<tr>
<td>7.13</td>
<td>Temperature distribution for different Ec ($\lambda = 3, \tau = 1, \sigma = 3$)</td>
<td>163</td>
</tr>
<tr>
<td>7.14</td>
<td>The skin friction coefficient $\left{ f'(0) \right}$ for different values of λ, τ, σ and Ec ($K = 2, Pr = 0.733$)</td>
<td>164</td>
</tr>
<tr>
<td>7.15</td>
<td>The local couple stress $\left{ g'(0) \right}$ for different values of λ, τ, σ and Ec ($K = 2, Pr = 0.733$)</td>
<td>164</td>
</tr>
<tr>
<td>7.16</td>
<td>The local Nusselt number ${ -\theta'(0) }$ for different values of λ, τ, σ and Ec ($K = 2, Pr = 0.733$)</td>
<td>164</td>
</tr>
<tr>
<td>8.1 (a)</td>
<td>Convergence of results with the variation of number of elements ($\lambda = -1, \tau = 2, K = 2, Pr = 0.733, Sc = 0.25$)</td>
<td>173</td>
</tr>
<tr>
<td>8.1 (b)</td>
<td>Comparison of the flow velocity ${ f'(\eta) }$ obtained by exact solution of Crane [57] and FEM ($\lambda = 0, \tau = 0, K = 0, Pr = 0.733, Sc = 0$)</td>
<td>173</td>
</tr>
<tr>
<td>8.1 (c)</td>
<td>Comparison of $-\theta'(0)$ for different values of τ and Pr ($\lambda = 0, K = 0, Sc = 0$)</td>
<td>174</td>
</tr>
<tr>
<td>8.2</td>
<td>Velocity distribution for different λ ($\tau = 2, K = 2, Sc = 0.25$)</td>
<td>179</td>
</tr>
<tr>
<td>8.3</td>
<td>Microrotation distribution for different λ ($\tau = 2, K = 2, Sc = 0.25$)</td>
<td>180</td>
</tr>
<tr>
<td>8.4</td>
<td>Temperature distribution for different λ ($\tau = 2, K = 2, Sc = 0.25$)</td>
<td>181</td>
</tr>
<tr>
<td>8.5</td>
<td>Concentration distribution for different λ ($\tau = 2, K = 2, Sc = 0.25$)</td>
<td>182</td>
</tr>
<tr>
<td>8.6</td>
<td>Velocity distribution for different τ ($\lambda = -1, K = 2, Sc = 0.25$)</td>
<td>183</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>8.7</td>
<td>Microrotation distribution for different τ ($\lambda = -1, K = 2, Sc = 0.25$)</td>
<td>184</td>
</tr>
<tr>
<td>8.8</td>
<td>Temperature distribution for different τ ($\lambda = -1, K = 2, Sc = 0.25$)</td>
<td>185</td>
</tr>
<tr>
<td>8.9</td>
<td>Concentration distribution for different τ ($\lambda = -1, K = 2, Sc = 0.25$)</td>
<td>186</td>
</tr>
<tr>
<td>8.10</td>
<td>Velocity distribution for different K ($\lambda = -1, \tau = 2, Sc = 0.25$)</td>
<td>187</td>
</tr>
<tr>
<td>8.11</td>
<td>Microrotation distribution for different K ($\lambda = -1, \tau = 2, Sc = 0.25$)</td>
<td>188</td>
</tr>
<tr>
<td>8.12</td>
<td>Temperature distribution for different K ($\lambda = -1, \tau = 2, Sc = 0.25$)</td>
<td>189</td>
</tr>
<tr>
<td>8.13</td>
<td>Concentration distribution for different K ($\lambda = -1, \tau = 2, Sc = 0.25$)</td>
<td>190</td>
</tr>
<tr>
<td>8.14</td>
<td>Concentration distribution for different Sc ($\lambda = -1, \tau = 2, K = 2$)</td>
<td>191</td>
</tr>
<tr>
<td>8.15</td>
<td>Skin friction coefficient ${f^*(0)}$ for different values of λ, τ, K and Sc with $Pr = 0.733$</td>
<td>192</td>
</tr>
<tr>
<td>8.16</td>
<td>The local couple stress ${g'(0)}$ for different values of λ, τ, K and Sc with $Pr = 0.733$</td>
<td>192</td>
</tr>
<tr>
<td>8.17</td>
<td>Local Nusselt number ${-\theta'(0)}$ for different values of λ, τ, K and Sc with $Pr = 0.733$</td>
<td>192</td>
</tr>
<tr>
<td>8.18</td>
<td>Local Sherwood number ${-C'(0)}$ for different values of λ, τ, K and Sc with $Pr = 0.733$</td>
<td>193</td>
</tr>
</tbody>
</table>