Chapter 2

H-line graphs

This chapter deals with the graph operator $L_H(G)$ and the corresponding graph class, H-line graphs. We show that H-line graphs admit a forbidden subgraph characterization only when $H = K_{1,2}$. We also obtain a Krausz type characterization for star-line graphs. The notion of line index of a graph, $\zeta(G)$ is generalized to $\zeta_n(G)$, n-star-line-index of a graph G. We also characterize graphs in terms of $\zeta_3(G)$, $\zeta_4(G)$ and $\zeta_n(G), n \geq 5$.

Some results of this chapter are included in the following papers.
2. Seema Varghese, A. Vijayakumar, On the planarity of iterated star-line graphs (Submitted).

45
2.1 Non-existence of forbidden subgraph characterization

Let H be a connected graph of order at least three. It is clear that $L_H(G)$ is a spanning subgraph of $L(G)$.

Lemma 2.1.1. If H is a graph with the edge-independence number, $\alpha'(H) > 1$, then $K_n, n \geq 2$ is not an H-line graph.

Proof. Suppose that $\alpha'(H) > 1$ and e_1, e_2 are any two independent edges in H. Since $L_H(G)$ has an edge if and only if G contains a copy of H, the edges e_1, e_2 will be independent in G also. Clearly, the vertices corresponding to e_1 and e_2 are not adjacent in $L_H(G)$. \hfill \Box

Lemma 2.1.2. Every K_n is an induced subgraph of $L_H(G)$ for some graph G.

Proof. The graph G can be constructed as follows. With each pair of adjacent edges $\{vv_i, vv_j\}$ of $K_{1,n}$ construct a copy of H. In the newly constructed graph G, the edges $\{vv_i, vv_j\}$ are adjacent and there is a copy of H containing both these
2.1. Non-existence of forbidden subgraph characterization

Fig 2.1: K_4 is an induced subgraph of $L_{C_4}(G)$

edges where i and j are integers such that $1 \leq i, j \leq n$. Hence $\{vv_1, vv_2, \ldots vv_n\}$ will induce a K_n in $L_H(G)$.

Note: The case when $H = C_4$ is illustrated in Fig: 2.1.

Thus, it is clear from Lemma 2.1.2 that H-line graphs do not have induced hereditary property and hence, by Theorem 1.2.1 they lack forbidden subgraph characterization, if $\alpha'(H) > 1$. If $\alpha'(H) = 1$, then H is either $K_{1,n}, n \geq 2$ or K_3. $L_{K_{1,2}}(G)$, which
is the line graph of G, admits a forbidden subgraph characterization (Theorem 1.2.2) but $L_{K_3}(G)$ does not admit a forbidden subgraph characterization (Theorem 1.2.4). Now, we shall show that $L_{K_{1,n}}(G), n \geq 3$ does not have the induced hereditary property.

Lemma 2.1.3. If G is a H-line graph, then every edge of G lies in a copy of $L(H)$.

Proof. Let $G = L_H(G')$. If there is an edge in G, then there will be a copy of H in G'. Then the edges in $H \subseteq G'$ will induce a copy of $L(H)$ in G. \hfill \Box

Lemma 2.1.4. The graph $C_m, m \geq 4$ is not a $L_{K_{1,n}}(G), n \geq 3$, for any G.

Proof. If $C_m, m \geq 4$ were a $L_{K_{1,n}}(G), n \geq 3$, then by Lemma 2.1.3, every edge of C_m would lie in a copy of $L(K_{1,n}) \cong K_n, n \geq 3$. \hfill \Box

Lemma 2.1.5. For $m \geq 4$, every C_m is an induced subgraph of $L_{K_{1,n}}(G), n \geq 3$, for some graph G.

2.1. Non-existence of forbidden subgraph characterization

Fig 2.2: C_4 is an induced subgraph of $L_{K_{1,4}}(G)$

Proof. Let $G = C_m \circ K_{n-2}^c$. Then $L_{K_{1,n}}(G)$ will contain C_m as an induced subgraph.

Note: The case when $m = 4$ and $n = 4$ is illustrated in Fig: 2.2.

\[\square\]

Theorem 2.1.6. H-line graphs admit a forbidden subgraph characterization if and only if $H = K_{1,2}$.

Proof. The necessary part follows from Theorem 1.2.2. The sufficiency part follows from Theorem 1.2.4 and Lemmas 2.1.1 to 2.1.5.

\[\square\]
2.2 Krausz-type characterization for star-line graphs

Analogous to the Theorem 1.2.3, the Krausz characterization of line graphs, we have the following theorem for star-line graphs.

Theorem 2.2.1. A graph G is a star-line graph, $L_{K_{1,n}}(G')$, $n \geq 2$ if and only if $E(G)$ has a partition into cliques of order at least n using each vertex of G at most twice.

Proof. When $n = 2$, the theorem reduces to the Krausz characterization of line graphs. Suppose, $G \cong L_{K_{1,n}}(G')$, for some $n \geq 3$. Let $v \in G'$ be such that $\deg(v) \geq n$. The edges incident to v will form a clique C_v of order at least n in G. Then, $\mathcal{E} = \{C_v | v \in G' \text{ and } \deg(v) \geq n\}$ will form a clique cover of the edges of G in which every vertex of G is in at most two members of \mathcal{E}.

Conversely, suppose that G has an edge clique partition \mathcal{E} satisfying the condition of the theorem. Consider the intersection graph $I(\mathcal{E})$. Corresponding to every vertex of G, which
belong to exactly one clique C of \mathcal{E}, draw a pendant vertex to the vertex corresponding to C in $I(\mathcal{E})$ and for every isolated vertex of G, draw an isolated edge. Let the newly constructed graph be G'. Now we shall show that $L_{K_{1,n}}(G') \cong G$. Define $\phi : V(G) \longrightarrow V(L_{K_{1,n}}(G'))$ as follows: If $v \in V(G)$ is such that $v \in C_i \cap C_j$, then C_i and C_j are adjacent in $I(\mathcal{E})$ and define $\phi(v)$ to be the edge in G' joining C_i and C_j. If $v \in C_i$ only, then there will be a pendant vertex in G' corresponding to v and define $\phi(v)$ to be the pendant edge attached to C_i. If v is an isolated vertex in G, define $\phi(v)$ to be the isolated edge in G' corresponding to v. It is clear that ϕ is a well-defined bijection.

Let u and v be adjacent vertices in G. Then u and v belong to a clique C_i of the partition. Since every clique of the partition is of order at least n, there are vertices $w_1, w_2 \ldots w_{n-2}$ in C_i. The construction of G' is such that edges corresponding to these vertices $u, v, w_1, w_2 \ldots w_{n-2}$ will have a common vertex forming a $K_{1,n}$ in G'. Thus the edges corresponding to u and v are adjacent and lie in a common copy of $K_{1,n}$ in G' and hence u and v are adjacent in $L_{K_{1,n}}(G')$. Therefore, ϕ is an isomorphism.

Corollary 2.2.2. $L_{K_{1,n}}(G'), n \geq 3$ is a line graph in which every edge lies in a K_n.

2.3 3-star-line-index of a graph

In this section, we characterize graphs in terms of $\zeta_3(G)$.

Lemma 2.3.1. If G' is a subgraph of G, then $\zeta_n(G) \leq \zeta_n(G')$.

Proof. Let $\zeta_n(G') = k$. Then, $L^k_{K_{1,n}}(G')$ is nonplanar and so is $L^k_{K_{1,n}}(G)$, since G' is subgraph of G. □

Lemma 2.3.2. If G is a graph with $\Delta(G) \geq 4$, then $\zeta_3(G) \leq 3$.

Proof. If $\Delta(G) \geq 4$, then G contains $K_{1,4}$ as a subgraph and $L^3_{K_{1,3}}(K_{1,4})$ (Fig: 2.3) is a 6-regular graph and hence is nonplanar by Theorem 1.2.6. Therefore, $\zeta_3(K_{1,4}) \leq 3$ and by Lemma 2.3.1, $\zeta_3(G) \leq 3$. □

![Fig 2.3: $L^3_{K_{1,3}}(K_{1,4})$](image-url)
Lemma 2.3.3. For any graph G, $\zeta_3(G) \in \{0, 1, 2, 3, 4, \infty\}$. Also, $\zeta_3(G) = \infty$ if and only if $\Delta(G) \leq 3$ and no two vertices in G of degree three are adjacent.

Proof. If $\Delta(G) \geq 4$, by Lemma 2.3.2, we have $\zeta_3(G) \leq 3$. If $\Delta(G) \leq 2$, then G does not contain $K_{1,3}$ as a subgraph and hence $L_{K_{1,3}}(G)$ is totally disconnected. Therefore $\zeta_3(G) = \infty$. If $\Delta(G) = 3$ and G does not have two adjacent vertices of degree three, then $L^2_{K_{1,3}}(G)$ will be totally disconnected and hence $\zeta_3(G) = \infty$. If G has two adjacent vertices of degree three, then $L^2_{K_{1,3}}(G)$ will have K_4 as a subgraph and $L^2_{K_{1,3}}(K_4)$ is a 6-regular graph (Fig: 1.9) which is non-planar. Hence $\zeta_3(G) = 4$. \qed

Lemma 2.3.4. For any graph G, $L_{K_{1,3}}(G)$ is planar if and only if G satisfies the following:

(i) $\Delta(G) \leq 4$.

(ii) G does not contain any of the graphs H_1 or H_2 in Fig 2.4 as a subgraph.

(iii) G does not contain any subgraph homeomorphic to $K_{3,3}$ in which degree of every vertex in G is at least three.

Note: An edge with a single end vertex shows the degree of
that vertex. In Fig 2.4, the degree is three.

\textit{Proof.} If $\Delta(G) \geq 5$, then $L_{K_{1,3}}(G)$ contains K_5 as a subgraph and hence it is nonplanar by Theorem 1.2.5. Also, if G has any one of the graphs H_1 or H_2 as a subgraph, then $L_{K_{1,3}}(G)$ will contain any one of the graphs H'_1 or H'_2 in Fig 2.5 as a subgraph. Both graphs H'_1 or H'_2 are non planar by Theorem 1.2.5 and hence $L_{K_{1,3}}(G)$ is nonplanar.
For the necessity of condition (iii) we prove the following,

Claim 2.3.1. If G has a subgraph homeomorphic to G' in which degree of every vertex in G is at least three, then $L_{K_{1,3}}(G)$ has a subgraph homeomorphic to $L_{K_{1,3}}(G')$.

Let u_1u_2 be an edge of G' and u be the vertex in $L_{K_{1,3}}(G')$ corresponding to the edge u_1u_2. Suppose that the edge u_1u_2 is subdivided by the vertex u_3 whose degree in G is at least three as in Fig 2.6. Then the edges $u_3u_1, u_3u_2, u_3v_1, u_3v_2 \ldots u_3v_{n-2}$ will form a clique C_u in $L_{K_{1,3}}(G)$. Now, the vertices which were adjacent to u in $L_{K_{1,3}}(G')$ will be adjacent to the vertices corresponding to u_3u_1 and u_3u_2 in $L_{K_{1,3}}(G)$. Thus, corresponding to every edge of $L_{K_{1,3}}(G')$, we get a path in $L_{K_{1,3}}(G)$ and hence it
contains a subgraph homeomorphic to $L_{K_{1,3}}(G')$.

Hence, if G has a subgraph homeomorphic to $K_{3,3}$ in which degree of every vertex in G is at least three, then $L_{K_{1,3}}(G)$ has a subgraph homeomorphic to $L_{K_{1,3}}(K_{3,3})$ (Fig 2.7) which is non-planar.

\begin{figure}[h]
\centering
\includegraphics[width=8cm]{fig2.7.png}
\caption{$K_{3,3}$ and $L_{K_{1,3}}(K_{3,3})$}
\end{figure}

Conversely, suppose that $L_{K_{1,3}}(G)$ is nonplanar. Then, it contains a subgraph homeomorphic to K_{5} or $K_{3,3}$.

Case 1. $L_{K_{1,3}}(G)$ contains K_{5} or a subgraph homeomorphic to K_{5}.
If $L_{K_{1,3}}(G)$ contains K_5, then there are five mutually incident edges in G and $\Delta(G) \geq 5$, which is a contradiction. If $L_{K_{1,3}}(G)$ has a copy of K_5 with one edge subdivided once or twice, then it contains either a copy of G_a or a copy of G_b in Fig 2.8 as an induced subgraph. If $L_{K_{1,3}}(G)$ has a copy of K_5 with one edge subdivided more than twice then it contains a copy of G_c as an induced subgraph. If $L_{K_{1,3}}(G)$ has a copy of K_5 with more than one edge subdivided, then it has a copy of $K_{1,3}$ as an induced subgraph. All the graphs $G_a, G_b, G_c, K_{1,3}$ are forbidden subgraphs for line graphs by Theorem 1.2.2 and hence are forbidden for star-line graphs also by Corollary 2.2.2. Hence, $L_{K_{1,3}}(G)$ cannot have any subgraph homeomorphic to K_5 other than K_5.

Case 2. $L_{K_{1,3}}(G)$ contains $K_{3,3}$ or a homeomorphic copy of $K_{3,3}$ as a subgraph.

\begin{figure}[h]
\centering
\includegraphics[width=0.6\textwidth]{fig2.8.png}
\caption{Fig 2.8: G_a, G_b and G_c}
\end{figure}
In this case, $L_{K_{1,3}}(G)$ contains $K_{1,3}$ as an induced subgraph which is forbidden for star-line graphs. Also, any edge in $L_{K_{1,3}}(G)$ will lie in a triangle and any two cliques in the edge-clique partition of $L_{K_{1,3}}(G)$ can have at most one common vertex. These conditions will force $L_{K_{1,3}}(G)$ to have a copy of K_5 or a homeomorphic copy of $K_{3,3}$ in which degree of every vertex in G is at least three. But, then $\Delta(G)$ will be greater than four.

Lemma 2.3.5. For any graph G, $\zeta_3(G) = 1$ if and only if G is planar and contains any one of the graphs $K_{1,5}$, H_1 or H_2 in Fig 2.4 as a subgraph.

Proof. Follows from Lemma 2.3.4.

Lemma 2.3.6. For any graph G, $\zeta_3(G) = 2$ if and only if $L_{K_{1,3}}(G)$ is planar and G contains any one of the graphs in Fig 2.9 as a subgraph.

Proof. By Lemma 2.3.5, $\zeta_3(G) = 2$ if and only if $L_{K_{1,3}}(G)$ is planar and has any one of the graphs $K_{1,5}$, H_1 or H_2 in Fig 2.4 as a subgraph. As in the proof of Lemma 2.3.4, it follows that this is possible if and only if G has any one of the graphs in Fig 2.9 as a subgraph.
Lemma 2.3.7. For any graph G, $\zeta_3(G) = 4$ if and only if $\Delta(G) \leq 3$, G is planar and has two adjacent vertices of degree three and does not have any one of the graphs in Fig 2.10 as a subgraph.

Proof. If $\Delta(G) \geq 4$, we have by Lemma 2.3.2 that $\zeta_3(G) \leq 3$. Also, $\zeta_3(G)$ of the graphs (1) and (2) in Fig 2.10 is two and that of the graph (3) in Fig 2.10 is three. Hence, if G contains any of these graphs as subgraphs, then by Lemma 2.3.1, $\zeta_3(G) \leq 3$. Now, if $\Delta(G) \leq 3$ and G does not have two adjacent vertices
of degree three, then $L_{K_{1,3}}^2(G)$ will be totally disconnected and $\zeta_3(G) = \infty$.

We thus have,

Theorem 2.3.8. Let G be any graph. Then,

1. $\zeta_3(G) = \infty$, if and only if $\Delta(G) \leq 3$ and G does not contain two adjacent vertices of degree three.

2. $\zeta_3(G) = 0$, if and only if G is non-planar.

3. $\zeta_3(G) = 1$, if and only if G is planar and contains any one of the graphs $K_{1,5}, H_1$ or H_2 in Fig 2.4 as a subgraph.

4. $\zeta_3(G) = 2$, if and only if $L_{K_{1,3}}^2(G)$ is planar and G contains any one of the graphs in Fig 2.9 as a subgraph.
(5) \(\zeta_3(G) = 4 \), if and only if \(\Delta(G) \leq 3 \), \(G \) is planar and has two adjacent vertices of degree three and does not contain any one of the graphs in Fig 2.10 as a subgraph.

(6) \(\zeta_3(G) = 3 \), otherwise.

\[\square \]

2.4 4-star-line-index of a graph

In this section, we characterize all graphs in terms of \(\zeta_4(G) \). We first state two lemmas which can be proved as in the previous section and use it to compute the value of \(\zeta_4(G) \).

Lemma 2.4.1. Let \(G \) be any graph. Then \(L_{K_{1,4}}(G) \) is planar if and only if \(G \) satisfies the following:

(i) \(\Delta(G) \leq 4 \).

(ii) \(G \) does not contain any one of the graphs \(H_3 \) or \(H_4 \) in Fig 2.11 as a subgraph.

(iii) \(G \) does not contain any subgraph homeomorphic to \(K_{3,3} \) in which degree of every vertex in \(G \) is at least four.

Lemma 2.4.2. For any graph \(G \), \(\zeta_4(G) = 2 \) if and only if \(L_{K_{1,4}}(G) \) is planar and \(G \) has any one of the graphs in Fig 2.12 as a subgraph.
Lemma 2.4.3. Let G be any graph. Then, $\zeta_4(G) = \{0, 1, 2, \infty\}$.

Proof. For any graph G, $\zeta_4(G) = 3$ if and only if $L_{K_{1,4}}^2(G)$ contains any one of the graphs $K_{1,5}$, H_3 or H_4 as a subgraph. Also, if $L_{K_{1,4}}^2(G)$ contains any of these graphs, then G has any
2.5. n-star-line-index of a graph

one of the graphs in Fig 2.12 as a subgraph, which implies that
$L^2_{K_{1,4}}(G)$ is nonplanar and $\zeta_4(G) = 2.$

We summarize these results as follows.

Theorem 2.4.4. Let G be any graph. Then,

(1) $\zeta_4(G) = 0,$ if and only if G is non-planar.

(2) $\zeta_4(G) = 1,$ if and only if G is planar and contains any one
of the graphs $K_{1,5}, H_3$ or H_4 in Fig 2.11 as a subgraph.

(3) $\zeta_4(G) = 2,$ if and only if $L_{K_{1,4}}(G)$ is planar and G contains
any one of the graphs in Fig 2.12 as a subgraph.

(4) $\zeta_4(G) = \infty,$ otherwise.

2.5 n-star-line-index of a graph

Theorem 2.5.1. For $n \geq 5$ and for any graph $G,$ $\zeta_n(G) \in \{0, 1, \infty\}.$ Also,

(1) $\zeta_n(G) = 0,$ if and only if G is non-planar.
\((2) \) \(\zeta_n(G) = \infty \), if and only if \(G \) is planar and \(\Delta(G) \leq 4 \).

\((3) \) \(\zeta_n(G) = 1 \), otherwise.

Proof. \(L_{K_{1,n}}(G) \), \(n \geq 5 \) will have an edge if and only if \(\Delta(G) \geq 5 \) and in that case the edges incident on the vertex with maximum degree will induce a \(K_5 \) in \(L_{K_{1,n}}(G) \) which makes it nonplanar. Hence, \(\zeta_n(G) = 1 \). If \(G \) is nonplanar, then \(\zeta_n(G) = 0 \). If \(G \) is planar and \(\Delta(G) \leq 4 \), then \(L_{K_{1,n}}(G) \), \(n \geq 5 \) is an edgeless graph and hence \(\zeta_n(G) = \infty \). \(\square \)