Conclusion

We conclude the thesis by giving some suggestions for further study.

The outerplanarity [53] of iterated star-line graphs can be investigated. It would also be interesting to study the (t)-property [4] in the class of H-line graphs. The behaviour of \(L_H(G) \) when \(G \) is a Cartesian product, direct product etc. can be studied in detail. Also, one can attempt to study the relationship between the graph parameters like radius, diameter, domination number of \(G \) and \(L_H(G) \) for particular choices of \(H \).
The characterization of cycle graphs is still an open problem. Although, it seems difficult to get a complete characterization, one may try to get a characterization for cycle graphs which belong to some particular classes. In this thesis, we have obtained the condition for cycle graph to be connected. Hence, the relationship between $\kappa(G)$ and $\kappa(Cy(G))$ in the class of graphs where $Cy(G)$ is connected can be studied in detail.

The power domination problem is a very vibrant area today. Since the problem is NP-hard for general graphs, a result for some particular classes is significant. Characterization of graphs with $\gamma_p(G) = 1$ and that of graphs with $\gamma_p(G) = \gamma(G)$ is particularly interesting. Also, characterization of graphs with $\gamma_P(\mu(G)) = 1$, $\gamma_P(\mu(G)) = \gamma_p(G)$, $\gamma_P(\mu(G)) = \gamma_p(G) + 1$ may be attempted. The generalized Mycielskian of cycles form a network like structure. Hence, its power domination number and network parameters-degree, diameter, cost can be obtained and compared with other networks. The relationship between the power domination number and the zero forcing number discussed in [22] can be studied in detail.