ABSTRACT

Let G_0 be a simply connected non-compact real simple Lie group with maximal compact subgroup K_0. Let $T_0 \subset K_0$ be a maximal torus. Assume that $\text{rank}(G_0) = \text{rank}(K_0)$ so that G_0 has discrete series representations. We denote by $\mathfrak{g}, \mathfrak{t},$ and \mathfrak{k}, the complexifications of the Lie algebras g_0, t_0 and k_0 of G_0, K_0 and T_0 respectively. Denote by Δ the root system of \mathfrak{g} with respect to \mathfrak{t}. There exists a positive root system known as the Borel-de Siebenthal positive system such that there is exactly one non-compact simple root, denoted ν. We assume that G_0/K_0 is not Hermitian. In this case one has a partition $\Delta = \bigcup_{-2 \leq i \leq 2} \Delta_i$ where $\alpha \in \Delta$ belongs to Δ_i precisely when the coefficient of ν in α when expressed as a sum of simple roots is equal to i. Let G be the simply connected complexification of G_0. Denote by L_0 and \check{L}_0, the centralizer in K_0 of a certain circle subgroup S_0 of T_0 and its image in G (under the homomorphism $p : G_0 \rightarrow G$ defined by the inclusion $g_0 \hookrightarrow g$) respectively so that the root system of (L_0, T_0) is Δ_0. Any \check{L}_0-representation is regarded as an L_0-representation via p.

Let γ be the highest weight of an irreducible representation of \check{L}_0 such that $\gamma + \rho_\mathfrak{g}$ is negative on $\Delta_1 \cup \Delta_2$. Here $\rho_\mathfrak{g}$ denotes half the sum of positive roots of \mathfrak{g}. Then $\gamma + \rho_\mathfrak{g}$ is the Harish-Chandra parameter of a discrete series representation $\pi_{\gamma+\rho_\mathfrak{g}}$ of G_0 called a Borel-de Siebenthal discrete series representation. The K_0-finite part of $\pi_{\gamma+\rho_\mathfrak{g}}$ is admissible for a simple factor $K_1 \subset K_0$. It turns out that $S_0 \subset K_1$ and $K_1/L_1 = K_0/L_0$ is a Hermitian symmetric space where $L_1 = L_0 \cap K_1$. One has a Hermitian symmetric pair of non-compact type (K_0^*, \check{L}_0) dual to the pair (K_0, L_0). The element γ also determines a holomorphic discrete series representation $\pi_{\gamma+\rho_\mathfrak{k}}$ of K_0^*.

In this thesis we address the following question: Does there exist common L_0-types between the Borel-de Siebenthal discrete series representation $\pi_{\gamma+\rho_\mathfrak{g}}$ and the holomorphic discrete series representation $\pi_{\gamma+\rho_\mathfrak{k}}$? We settle this question completely in the quaternionic case, namely, when $t_1 \cong \mathfrak{su}(2)$. In the general case, affirmative answer is obtained under the following two hypotheses—(i) there exists a (non-constant) relative invariant for the prehomogeneous space (L_0^C, u_1), where u_1 is the representation of L_0 on the normal space at the identity coset for the (holomorphic) imbedding $K_0/L_0 \hookrightarrow G_0/L_0$, and, (ii) the longest element w_0^k of the Weyl group of K_0 normalizes L_0. The proof uses, among others, a decomposition theorem of Schmid and Littelmann’s path model.