List of Figures

1.1 *Fusion reaction cartoon.* It shows the fusion of tritium nucleus and deuterium nucleus. The reaction product are helium nucleus with 3.5 MeV energy and a neutron with 14.1 MeV energy.

1.2 *Fusion reaction rates for the various fusion reactions.* The rate of fusion reaction is maximum around a particular ion temperature, e.g. the reaction rate for the deuterium-tritium fusion reaction is maximum around 100 keV.

1.3 *Magnetic mirror field configuration.* Here \(F_\parallel \) is the axial force on the particle due to gradient in the magnetic field from \(B_0 \) at the center to \(B_r \) at the reflection point. The reflection of particles from the two ends gives it mirror name. The axial field strength is maximum at two ends and minimum at the center. It changes the particles parallel velocity, which is maximum at the middle of the mirror, and zero at the reflection points. On the other hand the reflection of high energy particles is not possible, as the field is not able to make their parallel velocity zero at the ends.

1.4 *Schematic of tokamak with different field coils.* The toroidal field coils are used to generate the toroidal magnetic field and the primary transformer drives the toroidal plasma current in the gas. Here the plasma is the secondary of the transformer. The resulting helical field lines are superposition of the toroidal magnetic field and the poloidal magnetic field. The poloidal magnetic field is generated by the plasma current.
1.5 Schematic diagram of the scrape-off layer in the limiter plasma. The dashed circle is the limiter edge. Plasma inside the limiter is the main plasma with closed field lines and the plasma in limiter shadow is the scrape off layer plasma with open field lines. Here the field lines open at the limiter. 7

1.6 A single null (X-point) divertor tokamak scrape-off layer and main plasma. The field lines inside the separatrix/LCFS are the closed field lines and outside the separatrix field lines are opens up at the divertor. The benefit of divertor tokamak over the limiter tokamak is that in the divertor tokamak, the main plasma is not in the direct contact with the material surface. In single null the outboard field lines connects to the inboard field lines from the other side of null point but in the double null (i.e., with two X-points) the outboard field lines do not connect to the inboard field lines as the both top and bottom paths are blocked by the null point. 8

1.7 Schematic of the plasma diffusion from the main plasma to SOL. The diffusion of the plasma from the main plasma is shown by the vertical arrows. The SOL width, shown by the double arrow, is controlled by the parallel connection length L_{\parallel}, diffusion coefficient D_{\perp} and ion sound speed C_s. The $L_{\parallel} = \pi R$, for the single poloidal limiter SOL, where R is the major radius. Two hatched lines are the two faces of the limiter and the material walls is shown by the thick line. 10

1.8 Schematic of simple scrape-off layer plasma flows. Here the only deriving term behind the plasma flows is the limiter sink action. The speed of ions reaches to C_s at the sheath edge, which is $\sim 10\lambda_D$ thick (exaggerated). The midplane between the two faces remain stagnated and plasma accelerates on both sides of this midplane. 11
2.1 Top view of the ADITYA tokamak. Twenty toroidal field coils “TF” are used to generate the B_T. Two pairs of vertical field B_v coils are used for the plasma position stability, shown in light red color and by labels “B_v1” and “B_v2”. The main ohmic transformer “OT” is placed inside the central bore of the machine, shown by the red circular strip. The machine is made up of four quadrants and two isolations are provided, shown by triple dashed lines, and other two joints are conducting. The machine has twenty ports, and out of those four are used for the joints. For the vacuum, two cryo pumps “CP” and two turbo molecular pumps “TMP” are installed at the radial outboard ports. Limiter is shown by the black strip.

2.2 The vertical charging of plasma column by $B \times \nabla B$ and Curvature drift. The B_T magnitude in the inboard side is large as compare to the outboard side, it gives a gradient in the B_T. This ∇B and the curvature in the B_T, both causes the vertical charging of the plasma column, by $\pm \frac{1}{2} v_{\parallel} \rho_{i,e} \frac{B \times \nabla B}{B^2}$ and $\frac{m_i}{q_i} R_e \times \frac{\nabla B}{B^2}$, where \pm is for ions and electrons, V_{\parallel}, and v_{\parallel} are the parallel and perpendicular velocity components of the particles, $\rho_{i,e}$ are the ion and electron Larmor radius, q is the charge, and R_e is the radius of curvature. The vertical charging generates Electric filed (E), which causes $E \times B$ drift of the plasma column.

2.3 The resultant total helical magnetic field $B = B_T + B_\theta$ lines. The B_T is shown by the solid lines, B_θ by the dashed half circle and I_p is shown at the top by dashed line. The helical magnetic field lines connects the top and bottom of the plasma column, which causes the short circuiting of the vertical charging. In tokamaks, the poloidal magnetic field (B_θ) is generated by the plasma current, and $B_\theta \ll B_T$.

2.4 The particle motion along the helical field lines. Particle starts from a poloidal position A and lands up at a different poloidal location B, after completing of one full toroidal (ϕ) rotation. The change in the poloidal angle of the particle after one complete toroidal rotation is called rotational transform ι. The dashed line is the ‘locus of the center’ of the machine.
2.5 Typical plasma shot of ADITYA, (a) loop voltage V_L, (b) plasma current I_p, (c) vertical field B_v, (d) horizontal shift in plasma column δR and (e) vertical shift in the plasma column δY. The V_L is measured by a toroidal loop outside the torus. I_p is measured by Rogowski coil placed around the torus in poloidal plane. The δR and δY are estimated by the four position coils placed around the torus in poloidal plane. See Fig. 2.9f. The estimation of the B_v for the ADITYA plasma equilibrium is carried out by the calculations shown in the "Vertical magnetic field" section. For the first hand calculation, we are using $I_p(kA) = \frac{B_v}{4.05}$ for the B_v estimation, to control the plasma position for a given I_p.

2.6 Typical ADITYA shot data in continuation with Fig 2.5, (a) radiated power P_R measured by the bolometer, (b) H_α line radiation, (c) CIII line radiation, (d) neutral oxygen line radiation, (e) soft x-ray (SXR) and (f) hard x-ray (HXR). The H_α signal gives us the ionization information, the first peak shows the ionization of neutral H atoms. The second and third peak is the result of two small puff of hydrogen gas to increase the density, and to control the runaway electron generation, whose production is large at the first ~ 15 ms because of large loop voltage. The CIII and OI measurements give information about the impurities burn through in the initial phase and we can compare the relative impurity level in the two shots just by CIII and OI signals. The SXR signal gives the core electron temperature. The HXR signal measures the presence of runaway electron.

2.7 The resultant of the poloidal magnetic field B_θ and the vertical magnetic filed B_v. The magnetic pressure due to B_θ at the inboard side is large as compared to the outboard side (shown by different spacing of circles of B_θ). This inboard-outboard side asymmetry in B_θ gives an outward shift to the plasma (loop force). To balance this, we need to apply a external field which can increase the outboard B_θ and decrease the inboard side B_θ simultaneously.
2.8 Tungsten filament for the preionization in the ADITYA tokamak. It is of 0.5 mm diameter and 12 mm length. It is installed at the top port of the machine. Filament is negatively biased by 150 V with respect to the vessel. The heating is carried out by a supply of 19 Ampere current. The biasing voltage and current is chosen after optimization with the number of preionization experiments in ADITYA.

2.9 Plasma position measurement coils and limiter, (a) The plasma position measurement coils schematic, shown by spirals. Limiter is shown by the thick black circle. The location of coils should be at the midplane of outboard/inboard and top/bottom. In ADITYA, these coils are installed at the corners because of space limitation at the respective midplanes. (b) The limiter and the position coils in ADITYA. In this photograph only two outboard coils can be seen, and the other two are not in the view. The coils are shielded by the SS box to protect them from the heat and the capacitive pick ups.

3.1 Ion sheath formation at the interface of plasma and floating material. The region before the sheath is called presheath, which accelerates the ions to the ion acoustic speed C_s at the sheath edge. The potential beyond the presheath is the plasma potential. The sheath thickness is $\sim 5\lambda_D$, where λ_D is the Debye length. The speed of ions are shown by the dashed lines. For the electron sheath formation their is no need of presheath region.
3.2 Schematic of probe biasing scheme, where V_B and R_s are biasing voltage and sensing resistance to measure probe current, respectively. The probe is biased with respect the the vessel. The value of the sensing resistance should be chosen in such a way that the potential drop in R_s does not effect the potential at the probe tip. For the floating potential (V_f) measurement, there is no need of V_B and the value of R_s should be chosen to minimize the the current drawn by the probe. The choice of R_s for V_f measurement depends on the sheath resistance [75, 76], for tokamak like plasma R_s should be of the order of $\sim M\Omega$ and for the low density and low temperature plasma it should be of the order of $\sim 100 M\Omega$.

3.3 The probe current variation sketch with respect to the bias voltage V_B. This variation is normally referred as the probe characteristics. Probe current can be divided into three regions: (a) ion saturation current I_s region, below the floating potential V_f, in this region only ions are collected at the probe and nearly all the electrons are repelled by the probe. (b) increasing part, this part is combination of ion current and increasing electron current, and (c) electron saturation current I_{es} above the plasma potential V_P, in this region all the ions are repelled and only electrons are collected at the probe. The two dashed line represents the tangent to the rising part of the current and on electron saturation current, the intersection of two tangent lines is the V_P.

3.4 A sketch of the electron and ion current variation with respect to the probe bias voltage. Above the V_P, the probe current is only the electron current as the ion current is zero. On the other hand, the electron current to the probe at large V_B, is zero, here the only current to the probe is the ion saturation current. At the intermediate biasing (between V_f and V_P), both electron and ion current contributes to the probe current.

3.5 Triple probe biasing scheme. Two floating power supplies are used to bias the probes. To keep the whole system floating, all measurements should be carried out carefully by taking one of the three probes as a reference (P_1, is reference probe).
3.6 Potential diagram of three probe with respect to the plasma potential V_p. Here probes P_2 and P_3 are biased $-ve$ with respect to the probe P_1. This biasing shift the potential of probes P_2 and P_3 below the floating potential and raises the potential of probe P_1 above the floating potential. As a whole the complete system is floating.

3.7 Triple probe biasing scheme for direct display of T_e, where V_B and R is biasing voltage and sensing resistance to measure probe current, respectively. This whole system is floating and the measurements are carried out with respect to the P_1 probe. The voltage measured across the R gives information about the plasma density and the floating potential of probe P_2 (V_{d2}) with respect to the probe P_1 gives the T_e.

3.8 The relation between T_e and measured V_{d2} at different biasing voltages, V_{d3}. It shows the range of V_{d3} for which, T_e is directly proportional to the V_{d2}. The biasing voltage (V_{d3}) should be at least $\geq 2T_e$, to have a good linearity between T_e and V_{d2}.

3.9 Schematic of Mach probe in magnetic field, (a) top view of Mach probe, (b) view from one side (upstream). The upstream probe is the probe which faces the flow. The nomenclature of upstream and downstream is not universal. In tokamaks, sometimes the probe faces the plasma current is defined as the upstream and the other one as the downstream.

3.10 Schematic of ion collection by probe in strong magnetic field ($\rho_i < a$). The ion flux collected at the probe is provided by the cross field diffusion of the ions in the presheath region, indicated by the "Diffusive ion source". Presheath is elongated along the field direction. The length of this collection region along the field lines depend on the diffusion coefficient (D_{\perp}), ion acoustic speed (C_a) and on probe length (l). The collection length is given by $\sim C_a I^2 / D_{\perp}$.

3.11 Mach probe arrangement to measure the \parallel and \perp flows simultaneously. Here the θ is the angle of Mach probe with magnetic field. The \parallel and \perp are with respect to the magnetic field B_T direction.
4.1 Typical ADITYA capacitor bank discharge, (a) plasma current (I_p),
(b) loop voltage (V_L), (c) H_α and CHI emission line radiations, (d)
Hard X-ray signal (HXR), (e) vertical field B_v, and (f) horizontal
(δR) and vertical (δY) shifts in the plasma column from the limiter
center. The capacitor bank discharges are normally $\sim 25 – 30$ (ms)
long. Both V_L and B_v are generated by the capacitor banks.

4.2 (a) Front and side views of the Mach probe head (schematic), (b)
top view of the ADITYA tokamak showing toroidal separation be-
tween the limiter and the Top and Radial probe head. The Top probe
head consists of a single Langmuir probe and an unmagnetized Mach
probe. All the measurements of Mach number are carried out in the
ion saturation region. The direction of the B_T and I_p are indicated.

4.3 Front view of the Mach probe head (Schematic shown in Fig.4.2).
The toroidal/poloidal plates (6 mm \times 4 mm) are separated by the 9
mm and the toroidal/poloidal pins (length=4 mm, diameter= 1 mm)
are separated by the 17 mm. The toroidal plates, forms a mag-
netized Mach probe, and used for the parallel Mach number (M)
measurement. The toroidal pins forms a unmagnetized Mach probe
and used to check its flow direction consistency with the magnetized
Mach probe. The poloidal plates are used to measure the poloidal
flow direction only. The toroidal and poloidal directions are shown
by ϕ and θ respectively. The three central point probes forming a
triple Langmuir probe (forming equilateral triangle) and the poloidal
separated pins are not used for this experiment.

4.4 Raw data, (a) sweep bias and corresponding Langmuir probe cur-
cent, (b) downstream plate current I_{DN} of the Mach probe and (c)
upstream plate current I_{UP} of the Mach probe. The Mach number
and the electron current estimation are carried out in the window of
10 – 20 ms, during the I_p flat-top.

4.5 The I-V characteristic of the unmagnetized probe for the probe bi-
asing voltage from -80 V to 20 V. The fitted line indicates $I =
ae^{-bV_p} + c$, where $a=0.812$, $b=-0.049$ and $c=-0.412$ and the regres-
sion coefficient, R-square=0.99. It is the average of six successive
sweeps.
4.6 (a) Radial profile of electron temperature measured by a Langmuir probe mounted on the top port in discharges similar to the presented ones; (b) Floating potential profile in identical discharges. The red dashed lines are the fitted lines to the corresponding data points.

4.7 Schematic diagram showing plasma position (exaggerated). The probe positions (on both radial and top ports) are fixed with respect to the limiter, but plasma positions in different discharges may be different. The limiter center is indicated by the two dashed lines. Position probes are used to estimate the horizontal and vertical shift of the plasma column centroid from the limiter center. The $V_\theta = E_r \times B_\theta$, V_θ, B_T and I_p directions are indicated.

4.8 Comparison of the upstream J_{UP} and downstream J_{DN} current densities, measured by the Mach probe plates. The Mach number is estimated by the asymmetry in the J_{UP} and J_{DN}.

4.9 (a) Radial profile of mean plasma densities measured by the Mach probe at radial port, and (b) Radial profile of plasma density measured by the single Langmuir probe at the top port. The error bars indicate the scatter in the data. The difference in the magnitude and the decay lengths can be seen from the figure.

4.10 (a) Radial profile of the Mach numbers, and (b) Dependence of Mach numbers on the mean plasma density. The error bars indicate scatter in the data.

4.11 Sorting of the vertical charging by the Pfirsch-Schluter (PS) flows. The direction of the PS flows in the outboard side is in the I_p direction and opposite to it in the inboard side. The circle indicates the LCFS and two lines with arrow shows the direction of the PS flows from bottom to top of the plasma column.

4.12 Ballooning transport cartoon. The preferential diffusion of the particles on the outboard side is named as the ballooning type transport. It is because of the bad curvature of the B_T on the outboard side. The blue horizontal arrows shows the plasma diffusion and the the black arrows shows the plasma flow direction.
4.13 The variation of the plasma pressure along and across the field lines in the SOL plasma. Here C1, C2 and C3 are the constants and C3 > C2 > C1. At the mid-plane, between the two faces of the limiter the flow speed \(v_n\) is nearly zero and it increases towards the limiter face. The speed is shown by the arrows. The increase in the speed \(mnv^2\) is to keep the plasma pressure constant on the field line as the static pressure \(P_e + P_i\) at the limiter is nearly zero. The plasma pressure decrease as we go away from the the LCFS, so the retardation to the measured flows with \(r - r_{sep}\).

4.14 Schematic diagram of ADITYA SOL flows. ’R’ and ‘T’ indicate physical locations of Mach probe on the radial and top ports respectively and ‘Measured’ indicates the measured flow direction. The hatched lines indicate two faces of the limiter and ‘Plasma contact point’ indicates the contact of the plasma LCFS with the limiter [see Fig. 4.7]. Note that the connection length at the top probe is \(\pi R_{q_0}\) as explained in the text.

5.1 Projections of probe heads and the gas puff valve on one poloidal/azimuthal plane. The limiter is shown by a thick circle. The vertical charging shows that the \(B \times \nabla B\) is pointing to the top side of the plasma \((B_r, \text{anticlockwise from top of the machine})\). The plasma column is shifted in the outboard side and to the top side from the limiter center [see Fig. 5.2, for the measured \(\delta R\) and \(\delta Y\) shift].

5.2 Plasma column position measurement with respect to the limiter center. The \(\delta R\) and \(\delta Y\) are the horizontal and vertical shift of the plasma column from the limiter center, respectively. The positive values of both \(\delta R\) and \(\delta Y\) show, outboard and top side shift of the plasma column centroid [see Fig. 5.1, for plasma shift schematic].
5.3 (a) Schematic diagram of the probe head configuration, including pin probes and plate probes that are used for Mach number measurement. Probes 1, 2 and 3 are used for ion saturation current and 4, 5 and 7 are used for floating potential measurements. (b) locations of the Top probe, the Radial probe and the gas puff valve with respect to the limiter. Directions of plasma current and toroidal magnetic field are also indicated.

5.4 Probe head, where the two Molybdenum plates separated by 9 mm and are 3 mm x 4 mm, and forming a magnetized Mach probe. The two triple probe separated by 5 mm radially are consists of 3 mm length and 1 mm diameter Molybdenum pins. The triple probe pins forms an equilateral triangle with a separation of 3 mm. The upper triple probe is used for the electron temperature and particle flux measurement.

5.5 Examples of typical ADITYA discharge: (a) Chord-averaged plasma density measured by μW interferometer and voltage pulses on the gas-puff valve, (b) loop voltage, (c) plasma current, (d) radiated power along edge and core chords as measured by AXUV bolometer camera, (e) shows Hₐ, C-III and voltage on the gas-puff valve during 40-65 ms into the discharge, (f) floating potential, (g) ion saturation current at probe pins (see 5.3) and (h) soft X-ray signal. The sharp dip in soft X-ray signal is may be ignored as pick up and hence the soft X-ray signal increases during the gas puff.

5.6 Radial profiles of edge plasma density, measured at the (a) top probe and (b) radial probe. The vertical shadow band indicates the separation of the long Lₚ region from the short Lₗ region. Dashed lines are eye fits.

5.7 Radial profiles of floating potential, and (b) $V_\theta = V_{E \times B}$. The vertical shadow bands indicate separation of long connection length SOL from the short connection length SOL (Limiter Shadow) region. The star symbol in the (a) are the corresponding measured values of v_f during the gas puff by the three pins.
5.8 (a) Effect of gas puff on electron temperature measured by the triple probe; the maximum reduction in electron temperature is observed about 1.5 ms after the end of the voltage pulse on the gas puff valve, (b) the radial profile of electron temperature before or W/o and during the gas-puff. 85

5.9 Effect of gas puff on fluctuation of (a) ion saturation current and (b) floating potential. The fluctuation in ion saturation current is normalized but potential fluctuation is shown in the form of its root-mean-square (rms) value. The vertical shadow bands indicate separation of long connection length SOL from the short connection length SOL (Limiter Shadow) region. 86

5.10 Radial profiles of (a) particle flux, $\Gamma_r = \langle \bar{n}v_r \rangle$, and (b) toroidal Mach number M. The vertical shadow bands indicate separation of long connection length SOL from the short connection length SOL (Limiter Shadow) region. The dashed lines are eye-fits. 87

5.11 The Particle flux, $\Gamma_r = \langle \bar{n}v_r \rangle$ variation with the toroidal Mach number M. It indicates the importance of the plasma flows in controlling the radial transport of particles. 87

5.12 (a) Ion saturation current on upstream and downstream probes before and during gas puff, after 2 ms smoothing, (b) Mach numbers measured before (M) and during gas-puff (M_{GP}) in several discharges. The error bar indicates the scatter in the data. 89

5.13 (a) Parallel Mach number measured at three poloidal locations and just behind the limiter, (b) slab model of the SOL showing probe positions and measured flow directions. The probe locations are shown by ‘T’, ‘R’ and ‘O’ indicating Mach probes at the top, radial and outboard mid-plane respectively, ‘GP’ indicates the location of gas puff valve. The solid and dashed arrows show the flow directions before/without and during gas puff. The dotted lines at the ‘GP’ location indicate the flow directions because of local ionization source by gas puff. The error bar in (a) shows the scatter in the data. . . . 90
5.14 Radial profiles of (a) $\langle \delta V_r \delta M \rangle$ and (b) $\langle \delta V_r \delta V_\theta \rangle$. The vertical shadow bands indicate separation of long connection length SOL from the short connection length SOL (Limiter Shadow) regions. The dashed lines show the eye-fits. ... 91

6.1 (a) Loop voltage V_L and plasma current I_p signals of the typical ADITYA plasma discharge in (a) negative helicity, and (b) positive helicity. For negative helicity, when B_T and I_p are antiparallel, $[B_T(C.C.W), I_p(C.W)]$ is shown and for positive helicity, when B_T and I_p are parallel $[B_T(C.W), I_p(C.W)]$ case is shown. 96

6.2 (a) Schematic of the top view of the torus showing toroidal locations of probes with respect to the limiter and, the front and side view of the probe head. (b) The projection of the probes on the poloidal ring limiter (thick circle). The direction of B_T is such that the area vector of plates 1 and 2 are approximately parallel to B_T. 98

6.3 Schematic of plasma position for, (a) negative helicity, and (b) positive helicity cases. The field helicity is determined by directions of the toroidal magnetic field (B_T) and the plasma current (I_p). The positive and negative helicity can be defined by $H = \frac{B_T I_p}{B_T I_p}$, which gives ± 1 for co- and counter-cases. The shaded regions indicate the confined plasma (exaggerated). The limiter center is shown by the intersection of two dashed lines and plasma center by the dots. 98

6.4 Plasma column shift from the limiter center for, (a) negative helicity and (b) positive helicity. Here δR and δY are the horizontal and the vertical shifts, respectively. The δY shows that in the negative helicity, plasma centroid remains above the midplane, and remains below the midplane for the positive helicity. 99
6.5 Schematic 3D slab diagram of the SOL showing field line orientations for (a) negative helicity and (b) positive helicity. Two sides of the limiter are shown by hatched lines. The ϕ is the toroidal angle that increases in the clockwise direction as seen from the top of the torus and the θ is the poloidal angle; $\theta = 0^\circ$ indicates the low field side (LFS) midplane and increases above the midplane. The “T” and “R” indicate locations of the top probe and radial probe respectively. The high field side (HFS) midplane is shown by the thick line at $\theta = 180^\circ$. The plasma contact locations are $\theta \sim 20^\circ$ for the negative helicity and $\theta \sim 350^\circ$ for the positive helicity cases and shown by dotted lines. The total magnetic field lines are shown by the red dashed lines. The high pressure at the LFS midplane gives rise to anticlockwise flow in the negative helicity case and clockwise flow in the positive helicity case. This difference is because of different field line orientations in positive and negative helicity cases.

6.6 The radial profile of plasma density in the edge region in, (a) negative helicity, and (b) positive helicity configurations of magnetic field, measured at the ‘Top Probe’. Here each symbol is from individual shot data. The $r - r_{sep} = 0$ is the location of the LCFS.

6.7 The radial profile of the floating potential at two locations measured by: (a) Top Probe and (b) Radial Probe for the negative helicity case. The data from all three pins are included [45].

6.8 The radial profile of (a) particle flux, and (b) plasma density at the ‘Top Probe’ and the ‘Radial Probe’, in the negative helicity case. Both particle flux and plasma density are larger at the ‘Radial Probe’ near the last closed flux surface (i.e. $r - r_{sep} \sim 0$) as compared to those at the ‘Top Probe’. This indicates presence of ballooning effect.
6.9 Radial profiles of Mach number, measured by (a) Top Probe, and by (b) Radial Probe. Both measurements are for negative helicity cases. The dashed line is the hand-fit to the respective data and the solid line is the transport driven Mach number, calculated by the average of dashed lines (only for common radial distances). The negative transport driven Mach number at both top and radial probes shows that the transport driven flow is in counter-clockwise direction as seen from top of the torus.

6.10 Radial profiles of Mach number, measured by (a) ‘Top Probe’, and (b) ‘Radial Probe’ for positive helicity cases. The dashed line is the hand-fit to the respective data and dot/solid line is the transport driven Mach number, calculated by the average of dashed lines (only for common radial distances). The positive transport driven Mach number shows that this part of flow is in the clockwise direction as seen from top of the torus.