Chapter VI
Data Analysis: Procedures, Results and Interpretation

- 6.1 Introduction
- 6.1.2 Factor Analysis?
- 6.1.3 Step-Wise Factor Analysis Model: Procedure
 - 6.1.3.1 Selecting variables/Items for Analysis
 - 6.1.3.2 Selecting the Adequate Sample for Analysis
 - 6.1.3.3 Why Principal Component Analysis?
 - 6.1.3.4 Number of factors to be Retained
 - 6.1.3.5 Why Oblique (Direct Oblimin) Rotation?
 - 6.1.3.6 Results & Interpretation
- 6.1.4 Brief Summary of Findings
- 6.1.5 Multiple Regression
 - 6.1.5.1 Hierarchical Multiple Regression: Procedure
 - 6.1.5.2 Results & Interpretation
 - 6.1.5.2.1 The Traveller
 - 6.1.5.2.2 The Tourist
 - 6.1.5.2.3 The Virtuoso
- 6.1.6 Brief Summary of Findings
6.1 Introduction

In this chapter we shall first of all give details of the procedures we are using in our analysis of the data by explaining why we chose the methods and techniques we chose to analyze the data; in the second stage we will apply these procedures and methods to extract results, describe the conditionalities and their then record the results. Finally we will discuss the results in the context of our research design, research questions and hypotheses.

6.1.2 Why Factor Analysis?

Many scientific studies do rest on the fact that "numerous variables are used to characterize objects" (Rietveld & Van Hout 1993:251). Some of the examples would be the questionnaire based studies which consist of a lot of questions (variables), and studies in which mental ability is tested via several subtests, like verbal ability and logical reasoning (Darlington 2004). This large number of variables actually complicates the interpretation of data and results. Besides, there could even be possibility that some of the variables measure different aspects of a same underlying variable. It is in these situations that the use of factor analysis becomes crucial. Factor analysis attempts to bring intercorrelated variables together under more general, underlying variables. In more specific terms, factor analysis works toward reducing "the dimensionality of the original space and give interpretation to the new space, spanned by a reduced number of new dimensions which are supposed to underlie the old ones" (Rietveld & Van Hout 1993: 254); or to "explain the variance in the observed variables in terms of underlying latent factors" (Habing 2003: 2). Therefore, factor analysis offers not only the possibility of gaining a clear view of the data, but also the possibility of using the output in subsequent analyses (Field 2000; Rietveld & Van Hout 1993).

6.1.3 Step-wise Factor Analysis Model

Our model of factor analysis can be divided into seven main steps. These seven steps are: Reliability measurements; Correlations matrix; Principle Component Analysis/factor analysis; the number of factors to be retained; factor rotation method; and use and interpretation of results. The description of each step is given as under:
6.1.3.1 Selecting Variables/Correlation matrix for analysis

As we have seen above, factor analysis starts with correlation matrix, the variables/items we used in our correlation matrix were measured at interval level, and depicted in a normal distribution; because with a normal distribution it becomes possible to "generalize the results of [our] analysis beyond the sample collected" (Field 2000:444). We also checked that a substantial number of correlations in the correlation matrix we used were above 0.3 value, as proposed by Habing (2003:3) about the correlation to be used for factor analysis.

6.1.3.2 Sample Size for Analysis

The sample size has to be taken into consideration, as correlations are not resistant (Moore & McCabe 2002:103), and can hence seriously influence the reliability of the factor analysis (Field 2000:443; Habing 2003).

The sample size in our case was 209 subjects for a battery of 20 variables, which means that we collected about 11 responses for each variable which is quite adequate as suggested by Field. According Field (2000:443), a researcher should have "at least 10-15 subjects per variable".

We also found that 10 item activities (table 4.5) have factor loadings more than 0.8 and only two items recorded (table 4.5) factor loadings of less than 0.6(0.594 & 0.574), which also proves the adequacy of our sample size according to specifics stated by Stevens(2002:395), "a factor is reliable if it has: 3 or more variables with factor loadings of 0.8 and any n (sample size); 4 or more variables with factor loadings of 0.6 and any n; 10 or more variables with factor loadings of 0.4 and n \geq 150." We also had included 4 items on popular habitus related leisure activities, in our questionnaire, to measure taste for popular leisure, which would form an important independent variable of popular taste in regression analysis.

To check further the adequacy of our sample we ran the Kaiser-Meyer-Olkin measure of sampling adequacy test (KMO-test) in SPSS. The value, as given under in the table 6.1, we
obtained was 0.897, well above 0.5 which is the set limit for adequacy. Therefore, once again proving the adequacy of the sample we used for analysis.

Table 6.1: Kaiser-Meyer-Olkin Test
KMO and Bartlett’s Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.	0.897
Approx. Chi-Square	3788.738
Bartlett’s Test of Sphericity	
Df	120
Sig.	0

6.1.3.3 Why Principal Component Analysis (PCA)?

As shown in table 4.5 chapter IV we used a combined principal component analysis for all 20 items (16 tourism consumption items + 4 popular leisure items) as our factor extraction method. Again SPSS package was used to obtain the principal components that is the factor loadings for 20(16+4) variables we used as input. All in all 4 factors were extracted with factor loadings of very good magnitude as already mentioned above. We preferred Principal Component Analysis over other methods because we found that after doing extractions with principal factor analysis or principal axis factoring only an infinitesimal variation in the factor loadings was recorded. This goes in full agreement with what Rietveld and Van Hout state (1993:272), “although the loading patterns of the factors extracted by two methods do not differ substantially, their respective amounts of variance do!”

Studies by Field (2000:434) also support our selection of principal component analysis over other extraction methods, stating that “solutions generated from principal component analysis differ little from those derived from factor analysis techniques”. The main factors and factor loadings with corresponding items/variables are given as under:
Factor 1: T1 (0.936); T2 (0.849); T3 (0.819); T4 (0.851); T5 (0.756); T6 (0.792) Factor 2: L1 (0.939); L2 (0.814); L3 (0.937); L4 (0.594)
Factor 3: T11 (0.574); T12 (0.623); T13 (0.864); T14 (0.821); T16 (0.845) Factor 4: T7 (0.666); T8 (0.817); T9 (0.667); T10 (0.603); T15 (0.789)

6.1.3.4 The number of factors to be retained

Our aim is not to limit factors to any specific number as we are using exploratory factor analysis. We, however, did take note of some thumb rules suggested by researchers (Field 2000:436-437; Rietveld & Van Hout 1993:273-274) for determining how many factors can be retained:

1. Retain only factors with an eigenvalues larger than 1 (Guttman-Kaiser Rule);

2. Keep the factors which, in total, account for about 70-80% of the variance;

3. Make a scree plot; keep all the factors before breaking point or elbow.

On the basis of above mentioned conditions, the number of factors we retained were 3, which accounted for 77% of the variance.

6.1.3.5 Why Oblique (Direct Oblimin) Rotation?

We tried both orthogonal and oblique rotations to see how these rotations change the respective factor loadings and how their respective factor loadings would reflect in the interpretation. After weighing both the interpretations and the impact on factor loadings as well as correlations matrix, it was decided to go for oblique, direct Oblimin rotation because: We theoretically believe that the variables (factors) are from the same field of consumption and, therefore, are expected to have some correlation between them. Sufficient correlation was, in fact, observed between factors, and therefore, as Field (2000:439) states, "the choice of rotation depends on whether there is a good theoretical reason to suppose that factors should be related or independent and also on how the
variables cluster on factors before rotation", direct Oblimin was given preference over orthogonal rotation.

6.1.3.6 Results & Interpretation

Running a combined factor analysis of all 20 items, of which 16 items represented habitus related practices in tourism consumption while 4 items represented popular habitus related leisure activities, revealed 4 distinctive underlying factors of which 3 factors were from tourism consumption field whereas 1 factor belonged to the realm of popular leisure activities. The converged items corresponding to each of these underlying factors are given in table 6.2. As can be seen we have labeled each factor on the basis of the collective image and identification it reflects by converging items of a ‘specific taste’, which in itself is the reason why certain items converge under one ‘common’ underlying factor. Factor 1 was labeled TRAVELER (The Traveller); Factor 2 labeled POPLSUR (The taste for popular leisure); Factor 3 as TOURIST (The Tourist); and Factor 4 was labeled VIRTUSOS (The Virtuoso). We shall now give an interpretation of these factors and the converging items corresponding with each factor:

Factor 1 (Traveller)
On the basis of the converged items this factor was labeled TRAVELER by observing that all these distinctive characteristics are big departure from the mainstream tourist as is evident from literature on postmodern tourism consumption patterns. The rise of the traveller of yore is identified with independent, individual travels without any fixed itinerary, to destinations which are environmentally conserved and rarely trodden. These travellers, as was observed from their consumption style too, travel on shoe string budget, seek authentic encounters, not taking the services of a tour operator. They prefer using travel guides, preferably Lonely Planet or Rough Guide to travel through rugged terrains and cultures. Their main purpose is to explore in a distinguishing style.
Table 6.2: Factors Extracted and their corresponding converged items

| FACTOR 1 TRAVELER | T1. Travelled to parts of Europe, Africa, Asia and Americas
| | T2. Traveling for authentic experiences
| | T3. Local cuisine with local family on holiday abroad
| | T4. Willing to pay higher for environmentally conserved and less crowded places
| | T5. Taking off-the-beaten-track holidays
| | T6. Travel alone with lonely planet as travel guide |
| FACTOR 2 POPLSUR | L1. Attendance at Boxing/Racing/Football events
| | L2. Playing tennis/Fishing/Hunting for pleasure
| | L3. Attendance at Classical Music Concerts/ opera Performances
| | L4. Attendance at Popular Music Concerts/ carnival/ Street Dance |
| FACTOR 3 TOURIST | T11. Don’t mind using budget hotels to spend on other recreations.
| | T12. Pick items of local art/craft (like a bronze Buddha) as souvenirs
| | T13. Try/learn about the taste of local cuisine while on holiday abroad
| | T14. of luxury accommodation/ services on holiday abroad
| | T16. Usually travel abroad independently through reputed tour operator |
| FACTOR 4 VIRTUOSO | T7. Experience/ Study local history/culture on holidays abroad.
| | T8. Travelled in past as backpacker/trekker on exotic holidays
| | T9. Visit local museums art galleries live theatre on holidays abroad
| | T10. Take personalized, individual, escorted tours with luxury services and a la carte menu
| | T15. Have been on a luxury private cruise |
Factor 2 (Popular Leisure)

This factor as such is not from the realm of tourism consumption, but from the realm of popular leisure activities in routine life. The items corresponding with this factor were included to investigate any possible relationship between taste for popular leisure (at home) to tourism consumption on holidays abroad. The items converged in conformity with our theoretical proposition, and included varied popular tastes for music, sports, and other mass performances which can be classified as mass habitus leisure activities (or loosely identified as refined working class habitus). The factor was labeled POPLSUR and would be used as an independent (exploratory) variable in regression analysis latter in this chapter to investigate its impact on tourism consumption patterns.

Factor 3 (Tourist)

This factor, as is evident from the items that converged for its extraction, is the representative variable of mainstream tourist. This factor can be regarded as encapsulating the real character of typical postmodern tourist; the most distinguishing feature that we observe from the item convergences is that the domain of tourist is broad enough to include the complexities of a postmodern lifestyle. Their price sensitivity, yet the propensity to experience luxury, their dispositions-to-act practices of creating a fine mix of budget accommodation and cultural shopping are an indicator of the complexity ‘tourist’ embodies. We will explore these characteristics in detail in discussion part.

Factor 4 (Virtuoso)

The factor exposes the unique consumption style of a luxury tourist/traveller who is luxury by nature but not by purpose when it comes to choosing India as destination. We label this discerning tourist/traveller class fraction as virtuoso. Virtuoso in the sense, that tourism industry does refer to luxury segment as virtuoso. And, there are luxury tour operators and luxury hotel chains as well awarded virtuoso agent memberships or virtuoso hotel memberships on the basis of their expertise and performance in luxury market (again

\(^\text{13}\) Character was the word that Aristotle used to visualize \textit{hexis} which latter on came to be known as \textit{habitus}

\(^\text{14}\) Lahire differentiates between dispositions to believe and dispositions to act as two dimensions of habitus

\(^\text{15}\) Most of the tour operators in their marketing/promotion strategies identify luxury clientele with discerning character
we see that the practice of differentiation on the basis of habitus is found in service providers too). The virtuosos is the F.I.T (Free Individual Tourist) who has a long history of varied traveling patterns behind them; in other words these are the old, successful individuals who have cultivated a distinctive taste(skill, knowledge and symbolic power) to appreciate aesthetically objects and activities of sublime nature. They are out to impress by displaying this taste in the form of consumption. They use high profile, specialized tour operators and are surrounded by luxury and aesthetic experiences. More about this class will be discussed in the following chapter.

6.1.4 Brief Summary of Findings

We have just found that three distinctive styles of tourism consumption have emerged on the basis of distinctions in choices the subjects made among habitus related practices/activities in the realm of tourism consumption.

The traveller (TRAVELER) who is the backpacker, trekker, seeker of authentic cultural encounters, lonely, or member of a like-minded tribe, shoe-string budget traveler, out to understand, interact and intellectualize their activities. The youngest of all tourist classes, but also include old passionates too.

The mainstream typical ‘tourist’ of the postmodern is the one from a broad spectrum of socioeconomic bands clubbed into one broad category. Price sensitivity is a common feature of this class and so is the interest of its members in ‘all those hot spots there’. They indulge in cultural gazing, souvenir shopping and those sun, sand, sex experiences. Yes, a mass tourist who has cultural interest too in destinations like India. These are would-be virtuoso if they rise in their careers.

The ‘virtuoso’ is from the upper crust of society who likes to be surrounded by luxury, yet chooses destinations like India to impress with, ‘been there, done that’. These are the most travelled individuals who have had been travellers as well as tourists in their past lives. Now they don’t prefer brushing shoulders with the locals in a crowded place, rather would

\[16\] tribe: that is the name what some of these groups like to be identified with
gaze from behind the window glass. This is not the case, however, when chasing history in ruins or monuments, where they step out to see and appreciate in an aesthetic style.

6.1.5 Multiple Regression Analyses

Regression analyses are a set of statistical techniques that allow one to assess the relationship between dependent variable (DV) and several independent variables (IVs). Regression techniques can be applied to a data set in which the IVs are correlated with one another and with the DV to varying degrees. Multiple regression is an extension of bivariate regression in which several IVs instead of just one are combined to predict a value on a DV for each subject. The result of regression is an equation that represents the best prediction of a DV from several continuous (or dichotomous) IVs. The regression equation takes the following form:

\[Y' = A + B_1X_1 + B_2X_2 + \ldots + B_kX_k \]

Where \(Y' \) is the predicted value on the DV, \(A \) is the Y intercept, the Xs represent the various IVs, and Bs are the coefficients assigned to each of the IVs during regression.

6.1.5.1 Hierarchical Multiple Regression Analysis

Our multiple regression analysis involves both hierarchical regression and stepwise regression. This means that we enter variables in the regression model in an order determined by our theoretical predictions about the importance of predictor variables. So, for our analysis, we will enter variables in so called ‘blocks’ as explained below:

* **Block 1:** The first block contains predictors which we expect to be very close to being a measure of habitus. Such variables will be entered using forced entry. In our case we have only one variable which we expect, theoretically, as a very close measure of habitus and that is cultural capital (Educational qualification of the subject + Educational Qualification of subjects’ father) measured by CULCAP.

* **Block 2:** The second block will contain our exploratory predictor variables (the one’s we do not believe to be as close measures of habitus as culcap). These variables will therefore
be entered using a stepwise method (exploratory in nature) because we are exploring these variables. The variables are measures of economic capital (Income); and taste for popular leisure (POPLSUR);

To do a hierarchical regression in SPSS we enter the variables in blocks according to the details above. In the main linear regression block we enter the variable CULCAP in independent(s) box while selecting one of our dependent variables at a time (Traveler, Tourist, virtuoso) to enter in the dependent box. In the first block here we select the method as enter. Having specified the first block in the hierarchy we now move to the block 2. Second block would contain, as explained above, the exploratory predictor variables: Economic Capital and POPLSUR, which will be transferred to independent(s) box. “It is possible to select different methods of variable entry for different blocks in a hierarchy” (Field, 2005:4). So, although we specified forced entry in block 1, we could now select stepwise method for block 2. Just because we do not have any research available on the effects of these factors on tourist habitus, we might be justified in selecting stepwise method for this block. All in all, therefore, we obtained three regression models, one for each dependent variable.

6.1.5.2 Results & Interpretation

Sequential regression was employed to determine the relationship between cultural capital (which in its subjective embodied form is a key element of habitus) and various habitus related consumption styles in tourism. More specifically, in the first stage sequential regression was employed to determine relation between three distinctive tourism consumption styles (traveler, tourist and virtuoso) with cultural capital. Further stepwise regression was employed as second step to determine if addition of economic capital variable and then taste for popular leisure (POPLSUR) variable improved the prediction of these consumption styles beyond that afforded by cultural capital. Analysis was performed using SPSS sequential regression and stepwise regression in first and second step respectively.
6.1.5.2.1 The Traveler

As shown in table 6.3, CULCAP was entered through sequential method in model 1 of the analysis, followed by Economic Capital and POPLSUR independent variables (exploratory in nature) through stepwise method. The criteria for stepwise method was set for the probability of F to enter ≤.05, and to remove ≥.100. We have seen in the table that POPLSUR has been excluded.

Table 6.3 Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CULCAPa</td>
<td></td>
<td>Enter</td>
</tr>
<tr>
<td>2</td>
<td>Economic Capital</td>
<td></td>
<td>Stepwise Criteria(Probability of F to enter<-.050; probability of F to remove >=.100)</td>
</tr>
</tbody>
</table>

a. All requested variables entered

b. Dependent Variable: TRAVELER

The Model Summary:

The Model Summary as shown below in table 6.4 contains two models; model 1 refers to the first stage in the hierarchy when only CULCAP is used as predictor, and model 2 is the final model when economic capital and POPLSUR are added.

Model 2 refers to the final model (Economic Capital, and POPLSUR if they end up being included)

- The value of R i.e. the value of the multiple correlation coefficients between predictors and the outcome (which in model 1 is a simple correlation between CULCAP and Traveler) is 0.228 (between CULCAP as IV, in model 1); and R=0.276(with economic capital and POPLSUR added as IVs, in model 2). We observe an increase in the value of R with the addition of Economic Capital and POPLSUR.
Table 6.4 Model Summary

<table>
<thead>
<tr>
<th>MODEL</th>
<th>R</th>
<th>R²</th>
<th>Adjust R²</th>
<th>Standard Error of Estimate</th>
<th>Change Statistics</th>
<th>Durbin-Watson</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ΔR²</td>
<td>ΔF</td>
</tr>
<tr>
<td>1</td>
<td>.228a</td>
<td>.052</td>
<td>.047</td>
<td>12.6700</td>
<td>.052</td>
<td>11.362</td>
</tr>
<tr>
<td>2</td>
<td>.276b</td>
<td>.076</td>
<td>.067</td>
<td>12.5371</td>
<td>.024</td>
<td>5.411</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant) CULCAP
b. Predictors: (Constant) CULCAP, Economic Capital
c. Dependent Variable: TRAVELER

- R^2 (a measure of the how much of the variability in the outcome is accounted for by the predictors) for the first model has a value of 0.052, which means that CULCAP accounts for 5.2% of the variation in Traveler taste. This is a positive relationship but not a substantial impact. For the final model (model 2) this value increases to 0.076 or 7.6% of the variance in Traveler taste. Therefore, whichever variables enter the model in block 2 (Economic Capital and POPLSUR) account for an extra 7.6-5.2=2.4% of the variance in Traveler scores.

- The adjusted R^2 (which is an indicator of the generalizability of the model) in the final model is 0.067 which is (0.076-0.067=0.009) less than R^2 for the same model. This shrinkage of 0.9 % means that if the model were derived from the population rather than a sample it would account for approximately 0.9% less variance in the outcome.

- The Durbin-Watson value about the tenability of assumption of errors is close to 2, being exactly 2.003, therefore, showing that the assumption has certainly been met.
Table 6.5 ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>1823.940</td>
<td>1</td>
<td>1823.940</td>
<td>11.362</td>
<td>.001a</td>
</tr>
<tr>
<td>Total</td>
<td>33229.580</td>
<td>207</td>
<td>160.529</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35053.520</td>
<td>208</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Regression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>2674.514</td>
<td>2</td>
<td>1337.257</td>
<td>8.508</td>
<td>.000b</td>
</tr>
<tr>
<td>Total</td>
<td>32379.007</td>
<td>206</td>
<td>157.180</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35053.520</td>
<td>208</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant) CULCAP
b. Predictors: (Constant) CULCAP, Economic Capital
c. Dependent Variable: TRAVELER

ANOVA Table

The next part of output contains analysis of variance (ANOVA) that tests whether the model is significantly better at predicting the outcome than using the mean as a 'best guess', specifically the F-ratio (which represents the ratio of the improvement in prediction that results from fitting the model (regression), relative to the inaccuracy that still exists in the model (residual)). In the model 1 as shown above in table 6.5, the value of F-ratio is 11.362 which is much greater than 1, which is significant too (p=0.001). In the model 2 the value of F is 8.508 which is also highly significant (p<0.001). These values suggest that the final model significantly improves our ability to predict the traveler taste.

Model Parameters

We now move on to the next part of our output which is shown below in the table 6.6. The first step in our hierarchy included CULCAP but for more practical reasons we will be interested in the final model, model 2. In this model we would be more interested in standardized Beta, associated standard errors, t-statistics associated with Beta, and the significance of t. The B values tell us about the relationship between the traveler taste and
each predictor. The associated error indicates to what extent these values would vary across different samples. The standardized beta values provide a better insight into the 'importance' of a predictor in the model. For the final model, we observe that β for CULCAP is 0.289 which is positive, thus proving a positive relation between CULCAP and traveler taste; β for Economic Capital is -.167, which is negative, therefore, denoting a negative relation between economic capital and traveler taste. This also shows that CUCAP has far more impact on traveler taste than Economic Capital.

The t-test associated with these beta values is:

(CULCAP) $t = 4.020$ which is highly significant $p<0.001$

(Economic Capital) $t = -2.326$ which is also significant $p<0.05$

From the magnitude of t-statistics we again observe that CUCAP has far more impact (positive) in the model than Economic Capital which shows a negative impact on the traveler taste.

Table 6.6 Model Parameters: Traveler (Dependent Variable)

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE B</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>4.923</td>
<td>.989</td>
<td></td>
</tr>
<tr>
<td>Cultural Capital (CULCAP)</td>
<td>.202</td>
<td>.060</td>
<td>.228***</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>5.654</td>
<td>1.027</td>
<td></td>
</tr>
<tr>
<td>Cultural Capital (CULCAP)</td>
<td>.256</td>
<td>.064</td>
<td>.289**</td>
</tr>
<tr>
<td>Economic Capital</td>
<td>-8.25E-02</td>
<td>.035</td>
<td>-.167*</td>
</tr>
</tbody>
</table>

Note. $R^2 = .052$ for step 1; $\Delta R^2 = .024$ for step 2 (p < .05). $^* p < .05$, $^* * p < .001$, $^* * * p < .01$
Excluded variables:

In the table 8.1 (Appendix IV) which shows the excluded predictor variables in model 1 and model 2, we find that in the final model the predictor POPLSUR does not make to the regression equation that explains our model of relationship between Traveler Taste and the predictors. The interpreter POPLSUR has a \(t = -0.099 \), with \(p > 0.05 \). Infact the significance of POPLSUR is 0.921 which is almost 1, meaning that POSLUR has virtually no impact on traveler taste, therefore, stands excluded from the model.

6.1.5.2.2 The Tourist

As shown, in table 6.7, CULCAP was entered through sequential method in model 1 of the analysis, followed by Economic Capital and POPLSUR independent variables (exploratory in nature) through stepwise method. Since mainstream tourist class is the largest segment of tourism market and can not be considered as homogeneous a group as traveller and virtuoso, it makes more sense to investigate the impact of Age Group on tourist taste. More so, because significance of age in case of traveler and virtuoso is an established fact, the need to explore the relationship here is more demanding. Therefore, we entered Age Group as the fourth exploratory variable through stepwise method. The criteria for stepwise method was set for the probability of F to enter \(\leq 0.05 \), and to remove \(\geq 0.100 \). We have seen in the table that Economic Capital has been excluded. Here as evident tourist taste is our outcome variable.

The Model Summary:

The Model Summary, as shown in table 6.8, contains three models; model 1 refers to the first stage in the hierarchy when only CULCAP is used as predictor. Model 2 shows two variables as predictor (CULCAP & POPLSUR). Model 3 refers to the final model (CULCAP, POPLSUR, AGE GROUP)

- The value of \(R \) is 0.449 (in model 1); 0.467 (in model 2), and 0.533 (in model 3) A We observe an increase in the value of \(R \) with the addition of POPLSUR and AGE GROUP.
Table 6.7: Variables Entered/Removedb

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CULCAPa</td>
<td>.</td>
<td>Enter</td>
</tr>
<tr>
<td>2</td>
<td>POPLSUR</td>
<td>.</td>
<td>Stepwise (Criteria: Probability of F to enter $<=$.050; Probability of F to remove $>=$.100)</td>
</tr>
<tr>
<td>3</td>
<td>AGE GROUP: LESS THAN 20=1, ABOVE 60=6</td>
<td>.</td>
<td>Stepwise (Criteria: Probability of F to enter $<=$.050; Probability of F to remove $>=$.100)</td>
</tr>
</tbody>
</table>

a. All requested variables entered
b. Dependent Variable: TOURIST

- R^2 for the model 1 has a value of 0.202, which means that CULCAP accounts for 20.2% of the variation in TOURIST taste. This is a positive relationship and indicates a substantial impact on the outcome variable. For the model 2 this value increases to 0.218 or 21.8% of the variance in Tourist taste. Therefore, an addition of exploratory variable POPLSUR in block 2 accounts for an extra $21.8-20.2=1.6$, which is 16% of the variance in Tourist scores. In the final model (model 3) $R^2 = .284$ which means 28.4% of variance in tourist taste. In other words, addition of AGE GROUP in step 3 accounts for an extra $28.4-21.8=6.6$, which is 66% of variance in tourist scores.

- The adjusted R^2 in the final model is 0.273 which is $(0.284-0.273=0.011)$ less than R^2 for the same model, which is almost close to R^2. This shrinkage of 0.11% means that if the model were derived from the population rather than a sample it would account for approximately 0.11% less variance in the outcome. Thus, predicting a good generalizability of the model.
The Durbin-Watson value about the tenability of assumption of errors is close to 2, being exactly 1.946, therefore, showing that the assumption has certainly been met.

Table 6.8 Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R²</th>
<th>Adjust R²</th>
<th>Standard Error of</th>
<th>Change Statistics</th>
<th>Durbin-Watson</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ΔR²</td>
<td>ΔF</td>
</tr>
<tr>
<td>1</td>
<td>.449a</td>
<td>.202</td>
<td>.198</td>
<td>14.4060</td>
<td>.202</td>
<td>52.311</td>
</tr>
<tr>
<td>2</td>
<td>.467b</td>
<td>.218</td>
<td>.210</td>
<td>14.2928</td>
<td>.016</td>
<td>4.292</td>
</tr>
<tr>
<td>3</td>
<td>.533c</td>
<td>.284</td>
<td>.273</td>
<td>13.7134</td>
<td>.066</td>
<td>18.776</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant) CULCAP
b. Predictors: (Constant) CULCAP, POPLSUR
c. Predictors: (Constant) CULCAP, POPLSUR, AGE GROUP: Less than 20=1, 20-30=2...
d. Dependent Variable: TOURIST

ANOVA Table
In the model 1 as shown in table 6.9, the value of F-ratio is 52.311 which is much greater than 1, and is significant too (p<0.001). In the model 2 the value of F is 28.717 which is much greater than 1 and also highly significant (p<0.001). In the final model (model 3) the value of F is 27.056 which is again much greater than 1 and highly significant too (p<0.001). These values suggest that the final model significantly improves our ability to predict the tourist taste.

Model Parameters
The B values, as shown in the table 6.10, in all three models (except CULCAP in model 3) are all positive, which indicates a positive relation between each predictor and the tourist taste. In the final model we see that B for POPLSUR is 0.255, and for AGE GROUP it is 0.628. The standardized beta values provide a better insight in to the ‘importance’ of a predictor in the model. For the final model, we observe that β for POPLSUR is .122, which is positive and significant too. This, in other words, means that POPLSUR has a positive impact on tourist taste. β value for CULCAP is .005, which is very low and highly insignificant too (p=.961), thus indicating a virtually no relationship between CULCAP and
tourist taste. AGE GROUP, however, emerges a strong predictor with a β value of .515, which is substantial and highly significant ($p<.001$) too, thus showing a highly positive impact of AGE GROUP on tourist taste.

Table 6.9: ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regression</td>
<td>10856.294</td>
<td>1</td>
<td>10856.294</td>
<td>52.311</td>
<td>.000a</td>
</tr>
<tr>
<td>Residual</td>
<td>42959.480</td>
<td>207</td>
<td>207.534</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>53815.776</td>
<td>208</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Regression</td>
<td>11733.004</td>
<td>2</td>
<td>5886.502</td>
<td>28.717</td>
<td>.000b</td>
</tr>
<tr>
<td>Residual</td>
<td>42082.770</td>
<td>206</td>
<td>204.285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>53815.774</td>
<td>208</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Regression</td>
<td>15264.034</td>
<td>3</td>
<td>5088.011</td>
<td>27.056</td>
<td>.000c</td>
</tr>
<tr>
<td>Residual</td>
<td>38551.740</td>
<td>205</td>
<td>188.057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>53815.774</td>
<td>208</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant) CULCAP
b. Predictors: (Constant) CULCAP, POPLSUR
c. Predictors: (Constant) CULCAP, POPLSUR, AGE GROUP: Less than 20=1; 20-30=32; 31-40=3,...
d. Dependent Variable: TOURIST

The t-test associated with these beta values (for model 3) is:

(CULCAP) $t = 0.045$ which is highly insignificant; $p=0.961$
(POPLSUR) $t = 2.057$ which is also significant; $p<0.05$
(AGE GROUP) $t = 4.333$ which is highly significant; $p<0.001$

From the magnitude of t-statistics we again observe that AGE GROUP has more impact (positive) in the model than POPLSUR, while CULCAP bears no significant relation with tourist taste.
Excluded variables
Table 8.2 (Appendix IV) depicts the excluded interpreter variables which have been excluded from model 1, model 2 and model 3 respectively, for their insignificance in predicting the outcome variable which is tourist in this particular case. We find that in the final model the predictor Economic Capital does not make any significance impact in the model of relationship between Tourist Taste and the predictors. The predictor Economic Capital has a t = -1.415, with p>0.1. Being more precise the significance of Economic Capital is 0.159, which is greater than 0.1, meaning that Economic Capital has virtually no impact on tourist taste, therefore, stands excluded from the final model.

Table 6.10: Model Parameters: Tourist (Dependent Variable)

<table>
<thead>
<tr>
<th>Step</th>
<th>B</th>
<th>SE B</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>(Constant)</td>
<td>4.001</td>
<td>1.124</td>
</tr>
<tr>
<td></td>
<td>Cultural Capital (CULCAP)</td>
<td>.492</td>
<td>.068</td>
</tr>
<tr>
<td>Step 2</td>
<td>(Constant)</td>
<td>2.840</td>
<td>1.248</td>
</tr>
<tr>
<td></td>
<td>Cultural Capital (CULCAP)</td>
<td>.495</td>
<td>.068</td>
</tr>
<tr>
<td></td>
<td>Popular Taste (POPLSUR)</td>
<td>.267</td>
<td>.129</td>
</tr>
<tr>
<td>Step 3</td>
<td>(Constant)</td>
<td>3.265</td>
<td>1.202</td>
</tr>
<tr>
<td></td>
<td>Cultural Capital (CULCAP)</td>
<td>5.815E-03</td>
<td>.130</td>
</tr>
<tr>
<td></td>
<td>Popular Taste (POPLSUR)</td>
<td>.255</td>
<td>.124</td>
</tr>
<tr>
<td></td>
<td>Age Group</td>
<td>.628</td>
<td>.145</td>
</tr>
</tbody>
</table>

Note. R²=.449 for step 1: ΔR²=.016, ΔR²=.066 for step 3 (p<.001). * p < .001, ** p < .05, *** p < .001, **** p < .0001
6.1.5.2.3 The Virtuoso

Table 6.11 below, shows the list of variables entered and removed from the models and the method of regression used. CULCAP was entered through forced entry (sequential method) in block 1 of the linear regression analysis, followed by Economic Capital and POPLSUR predictor variables (exploratory in nature) through stepwise method. The criteria for stepwise method was set for the probability of F to enter ≤.05, and to remove ≥.100. We see in the table that only CULCAP has been entered in the model 1 and all other predictor variables have been removed in the subsequent stepwise method of model 2. Here, Virtuoso taste is our outcome variable.

Table 6.11 Variables Entered/Removed

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CULCAP(^a)</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a. All requested variables entered
b. Dependent Variable: VIRTUOSO

The Model Summary:

The Model Summary as shown in table 6.12, model 1 is only present with CULCAP as predictor. There is no model 2, however, as all variables added in the block 2 through stepwise method have been excluded as insignificant. Model 1, therefore, will be the final model for analysis.

- The value of \(R \) is 0.381 (between CULCAP & Virtuoso).
- \(R^2 \) has a value of 0.145, which means that CULCAP accounts for 14.5% of the variation in Virtuoso taste. This is a positive relationship and indicates a substantial impact on the outcome variable.
• The adjusted R^2 in the final model is 0.141 which is (0.145-0.141=0.004) less than R^2 for the same model, which is almost very close to R^2. This shrinkage of 0.4% means that if the model were derived from the population rather than a sample it would account for approximately 0.4% less variance in the outcome. Thus, predicting a good generalizability of the model.

• The Durbin-Watson value about the tenability of assumption of errors is close to 2, being exactly 2.001, therefore, showing that the assumption has certainly been met.

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R^2</th>
<th>Adjust R^2</th>
<th>Standard Error of Estimate</th>
<th>Change Statistics</th>
<th>Durbin-Watson</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.381a</td>
<td>.145</td>
<td>.141</td>
<td>14.2102</td>
<td>.145</td>
<td>35.218</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant) CULCAP
b. Dependent Variable: VIRTUOSO

ANOVA Table:

In the model 1 as shown in table 6.13, the value of F-ratio is 35.218 which is much greater than 1, and is significant too ($p<0.001$). These values suggest that the model is significant in its ability to predict the virtuoso taste.

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regression</td>
<td>7111.575</td>
<td>1</td>
<td>7111.575</td>
<td>35.218</td>
<td>.000a</td>
</tr>
<tr>
<td>Residual</td>
<td>41799.736</td>
<td>207</td>
<td>201.931</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>48911.311</td>
<td>208</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant) CULCAP
b. Dependent Variable: VIRTUOSO
Model Parameters:

The first column in table 6.14 shows the B values of model 1, which is the final model in this particular case. Both are positive, thus indicating a positive relation between the predictor (CULCAP in this case) and the virtuoso taste (outcome variable in this case). The value of B for CULCAP is 0.398.

The standardized beta values in this model, \(\beta \) for CULCAP is 0.381, is positive and of a fairly considerable magnitude, thus indicating a positive relation between CULCAP and virtuoso taste. No other predictor variables like Economic Capital or POPLSUR find a place in the model for their insignificance. The t-test associated with these beta values (for model 1) is:

\[
(CULCAP) \ t = 5.934 \text{ which is highly significant; } p<0.001
\]

From the magnitude of t-statistics we again observe that CUCAP has a considerable impact on Virtuoso taste in positive sense.

Table 6.14: Model Parameters for Virtuoso (Dependent Variable)

<table>
<thead>
<tr>
<th></th>
<th>(B)</th>
<th>(SE) (B)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>4.014</td>
<td>1.109</td>
<td></td>
</tr>
<tr>
<td>Cultural Capital (CULCAP)</td>
<td>.398</td>
<td>.067</td>
<td>.381*</td>
</tr>
</tbody>
</table>

Note. \(R^2=.145 \) for step 1; \(\Delta R^2=.145 \) (ps<.001). * \(p < .001 \)
Excluded variables:

Table 8.3 (Appendix IV) depicts the excluded predictor variables which have been excluded from model 1, for their insignificance in predicting the outcome variable, which is virtuoso in this particular case. We find that in the final model the predictor Economic Capital does not make any significance to our model of relationship between Virtuoso Taste and the predictors. The predictor Economic Capital has a $t = -1.331$, with $p>0.059$. Specifically the significance of Economic Capital is 0.185 which is much greater than 0.05, meaning that Economic Capital has virtually no impact on virtuoso taste, therefore, stands excluded from the final model. Similarly, predictor POPLSUR has a $t = .118$, with $p>0.05$. Being more specific, the significance of POPLSUR is 0.906, which is almost 1, therefore, proving that POPLSUR has virtually no impact on virtuoso taste, hence, excluded from the model.

6.1.6 Brief Summary of Findings

A review of results of the hierarchical regression analysis, as interpreted in sections above, leads to some important findings regarding the relationship between various habitus related consumption styles (traveler taste, tourist taste, virtuoso taste) in tourism and habitus related variable (cultural capital, economic capital, popular taste). Three important findings emerge from these results:

1. That of all habitus related variables, cultural capital emerges as the most significant variable which significantly affects variation across all distinctive styles of consumption in tourism, and therefore can be considered as the most influential agent in structuring tourism consumption. It may again be mentioned here that ‘in its subjective embodied form, cultural capital is a key element of the habitus’ (Holt 1998:4).

2. Economic Capital emerges as an important indicator of traveler taste, showing a negative impact on traveler taste, which means that an increase in income would lead to decrease in propensity for traveler consumption style; and, rightly so. Because, traveler has a shoe-string budget to travel at and is relatively low on
economic capital, as explained already in the conceptual model. Vis-à-vis other consumption styles (tourist and virtuoso) no significant relationship was found to exist between these consumption styles and economic capital. The reasons for no relation with tourist are unexpected and surprising, because we have seen and know that the tourist (mainstream segment) is the most price-sensitive of all tourist types. Various reasons could be put forth, however, to explain this departure. One of the possible reasons could be the authenticity of the responses regarding this particular item, as it was observed during survey that most of the respondents hesitated in putting the figures for income (economic capital) and some even left this item open. In case of virtuoso the non existence of relation with economic capital is perfectly in consonance with the expectations of the model, because this segment is the most price-insensitive, to the limit, that prices never impact the choices of a virtuoso about any part of the holiday package.

3. Taste for popular leisure (which technically corresponds to mainstream class habitus) showed a positively significant relationship with the tourist consumption style, whereas no significant relationship was observed between taste for popular leisure and traveler, or between taste for popular leisure and virtuoso. Perfectly in agreement with our expectations as it’s a measure of popular taste and as such can not be expected to have any positive relation with traveler and virtuoso, which both are the ‘unconventional’ tastes.