CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td>11</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>24</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>29</td>
</tr>
<tr>
<td>1. Basics of Superconductivity and Superconducting Radio Frequency Cavity</td>
<td>30</td>
</tr>
<tr>
<td>1.1 Basics of Superconductivity</td>
<td>30</td>
</tr>
<tr>
<td>1.1.1 Introduction</td>
<td>30</td>
</tr>
<tr>
<td>1.1.3 Critical fields in Superconductor</td>
<td>33</td>
</tr>
<tr>
<td>1.1.4 Phenomenological Theory</td>
<td>34</td>
</tr>
<tr>
<td>1.1.4.1 Two-Fluid Model</td>
<td>35</td>
</tr>
<tr>
<td>1.1.3.2 London Theory</td>
<td>36</td>
</tr>
<tr>
<td>1.1.3.3 Ginzburg- Landau (GL) Theory</td>
<td>38</td>
</tr>
<tr>
<td>1.1.3.3.1 Consequences of GL Equations</td>
<td>40</td>
</tr>
<tr>
<td>1.1.3.3.1.A Thermodynamic critical field</td>
<td>40</td>
</tr>
<tr>
<td>1.1.3.3.1.B Magnetic London Penetration depth</td>
<td>41</td>
</tr>
<tr>
<td>1.1.3.3.1.C Coherence length</td>
<td>42</td>
</tr>
<tr>
<td>1.1.3.3.1.D GL parameter</td>
<td>42</td>
</tr>
<tr>
<td>1.1.3.3.1.E Upper Critical Field (B_{c2})</td>
<td>43</td>
</tr>
<tr>
<td>1.1.3.3.1.F Lower Critical Field (B_{c1})</td>
<td>44</td>
</tr>
<tr>
<td>1.1.3.3.1.G Surface Critical Field (B_{c3})</td>
<td>45</td>
</tr>
</tbody>
</table>
1.2 Basics of Superconducting Radio Frequency Cavity (SCRF)

1.2.1 RF Cavity Definition

1.2.2 RF Cavity Figures of Merit

1.2.2.1 Accelerating Voltage

1.2.2.2 Stored Energy

1.2.2.3 Surface Resistance and Power Dissipation

1.2.2.4 Quality Factor

1.2.2.5 Geometric Factor and Shunt Impedance

1.2.3 RF Superconductivity

1.2.3.1 RF Critical Magnetic field

1.2.3.2 Microwave surface resistance

1.2.3.3 BCS resistance

1.2.3.4 Residual resistance

1.2.3.5 Limitations in the Superconducting Niobium Cavity Performance

2. Motivation for the Present Research

3. Investigation of the Thermal Conductivity of Niobium in the Temperature Range 1.8-5 K

3.1 Present Work

3.2 System Design

3.3 Measurement Methods

3.4 Zero Field Temperature Dependence of the Thermal Conductivity

3.5 Field Dependence of Thermal Conductivity

3.6 Conclusion

4 Effect of Low Temperature Baking on Bulk Magnetization, Surface Magnetization and Penetration Depth

4.1 Description of Samples

4.1.2 Large Grain Samples
4.1.3 Polycrystalline Samples 85

4.2 Bulk Magnetization Measurement 86
4.2.1 Result of Large Grain Niobium Samples 86
4.2.2 Result of Fine Grain Niobium Samples 88

4.3 Surface Magnetization Measurement 89
4.3.1 Result of Large Grain Niobium Samples 89
 4.3.1.1 Surface Pinning 89
 4.3.1.2 Effect of LTB on Hc3/Hc2 ratio 90
4.3.2 Result of Fine Grain Niobium Samples 96

4.4 Penetration Depth Measurement 100
4.4.1 Theory of the Experimental Determination of Penetration Depth 100
4.4.2 Experimental Results and Effects of LTB 102

4.5 Conclusion 104

5 DEFECT DEPTH PROFILING BY POSITRON ANNIHILATION SPECTROSCOPY 105

5.1 Experimental Setup 105

5.2 Large grain niobium samples and treatments 109

5.3 Experimental Results and Discussions 110

6 DESIGN, FABRICATION AND RF TEST OF $\beta=0.49$, 1050 MHz SINGLE CELL FINE GRAIN AND LARGE GRAIN ELLIPTICAL CAVITY 113

6.1 Introduction 113

6.2 Measurement of Mechanical properties of large grain niobium 114
 6.2.1 Experimental System 115
 6.2.2 Measurements Results 118
6.3 Cavity design
6.4 Optimization of cavity shape variables
6.5 Design parameters of the single cell cavity
6.6 Fabrication and preparation for RF test
6.6.1 Fabrication
6.6.2 Preparation for RF test
6.7 RF test
6.7.1 RF test setup
6.7.2 Fine grain cavity test result
6.7.3 Large grain cavity test results
6.8 Medium field Q-Slope analysis
6.9 Conclusion

7 SUMMARY AND CONCLUSIONS
REFERENCES