LIST OF FIGURES

Fig. 1.1 Variation of magnetization with applied magnetic field in Type – I superconductor.

Fig. 1.2 Variation of magnetization with applied magnetic field in Type-II superconductor.

Fig. 1.3 Gibbs free energy diagram in superconducting and normal conducting phase.

Fig. 1.4 Change in free energy with complex order parameter in normal and superconducting phase.

Fig. 1.5 Linear variation of $H_c(T)$ near T_c.

Fig. 1.6 Variation of penetration depth with temperature ($T\leq T_c$).

Fig. 1.7 Variation of coherence length ξ with temperature ($T\leq T_c$).

Fig. 1.8 Typical single cell cavity geometry with field lines of TM_{010} mode and also shows the particle acceleration direction.

Fig. 1.9 Phase diagram of the superconductor for the Meissner, superheated, mixed and normal state

Fig. 1.10 Theoretical surface resistance at 1.5 GHz of lead, niobium and Nb$_3$Sn as calculated from program

Fig. 1.11 A summary of the performance limitations of an SRF cavity. The maximum theoretically expected accelerating field is 50MV/m when the surface magnetic field reaches the peak RF critical field of ~200mT for niobium.

Fig.2.1 Fabrication steps of polycrystalline Niobium sheet [Courtsey: Tokyo Denkai Co. Ltd.]

Fig.2.2 Fabrication steps of Ingot Niobium sheet

Fig.2.3 Examples of Q-drop before baking and its removal after baking. [Figure taken from
Fig. 3.1 Schematic of the system for measurements of superconducting properties of the sample and picture of the sample rod.

Fig. 3.2 Critical magnetic field as a function of temperature measured on a Indium rod, 99.99% purity. The solid line is a least-square fit with Eq. (3).

Fig. 3.3 The ratio of $K_n / K_m = R(y)$ as a function of reduced temperature, $T / T_c = \alpha / y$ (within the experimental temperature range)

Fig. 3.4 Experimental thermal conductivity data for 180 µm buffered chemical polished Niobium samples from four different ingots. Solid lines are the fitting curves.

Fig. 3.5 Experimental thermal conductivity data for 600°C heat treated Niobium samples from four different ingots. Solid lines are the fitting curves.

Fig. 3.6 Thermal conductivity data in normal and superconducting state for the sample C1. Solid lines are the fitting curves with Eqn.(6).

Fig. 3.7 Plot of k_S versus T, ■ C1-Zero field, *C1-Trapped flux 81 mT, Δ A1-Zero field, ○ A1-Trapped flux 60 mT, solid lines are the fitting curves of Eqn. (6).

Fig. 3.8 Magnetization curves at $T = 2K$ with and without remnant magnetization for ---- A1, --- C1.
Fig. 3.9 Effect of trapped vortices on the superconducting state thermal conductivity in sample A1 and C1. Solid lines represent the qualitative theoretical model by Vinen et.al. at low inductions and at low temperature.

Fig. 3.10 Field dependence of the thermal conductivity with and without trapped vortices measured with the field parallel to the heat flow direction at 2K.

Fig. 3.11 $\Delta k/k^e$ as a function of μ in sample B1. (Δ) Sample B1 without any trapped flux in zero field, (■) sample B1 with an initial remnant magnetization of about 58 mT, solid line is the theoretical curve of Houghton-Maki.

Fig. 3.12 Plot of thermal conductivity in superconducting state in zero remnant field, with remnant field and heating up the sample through T_c to exclude the flux lines to reproduce the zero field curve

Fig. 4.1 Magnetization curves of BCP samples at 2K.

Fig. 4.2 Magnetization curve of 600°C heat treated samples at 2K.

Fig. 4.3 Ramp-up of magnetic field with Tin

Fig. 4.4 Bulk magnetization measurement of fine grain sample ‘b’ and ‘c’ respectively

Fig. 4.5 Surface pinning characteristics before and after the LTB.

Fig. 4.6 d_{expt} with different surface treatment.

Fig. 4.7 Surface oxygen concentration [%at] with different surface treatment
Fig. 4.8 Surface pinning measurement at 2K.

Fig. 4.9 Surface pinning measurement at 4.2K

Fig. 4.10 Surface oxygen concentration [%at] with different surface treatment in polycrystalline niobium sample.

Fig 4.11: A plot of $\frac{1}{f^2}$ Vs R^2

Fig. 4.12 $\Delta \lambda(y)$ measured on large grain sample C after different surface treatments.

Fig.5.1 The decay scheme and the emission spectrum of 22Na

Fig.5.2 Slow positron beam facility at RCD, BARC

Fig.5.2 Doppler broadening spectrum of positron annihilated gamma radiation

Fig.5.3 Makhov profiles of positron penetration in Nb for different beam energies

Fig.5.4 Mean implantation depth in niobium

Fig.5.5 Variation S parameter with the positron beam energy vis-à-vis the defect depth of the BCP sample

Fig.5.6 Variation S parameter with the positron beam energy vis-à-vis the defect depth of the 600°C heat treated sample

Fig.5.7 Schematic drawing of six crystallographically equivalent positions of hydrogen trapped in the vacancy site

Fig.6.1 Photograph of the experimental setup for the mechanical measurement

Fig.6.2 Tensile test sample geometry

Fig.6.3 Stress Vs Strain curves of the large grain niobium with various treatments.

Fig.6.4 Load Vs % elongation plots of the large gain niobium samples with various treatments.
Fig. 6.5-a: Symmetric half cavity shape and parameters.

Fig. 6.5-b: Variation of E_{pk}/E_{acc} and B_{pk}/B_{acc} with the wall angle.

Fig. 6.6 Variation of E_{pk}/E_{acc} and B_{pk}/B_{acc} with iris ellipse ratio.

Fig. 6.7 Variation of shunt impedance with the wall angle.

Fig. 6.8 (a) Drawing of the 1050 MHz, $\beta=0.49$ cavity, (b) Electrical field distribution in TM_{010} mode, (c) Magnetic field distribution in TM_{010} mode.

Fig. 6.9 (a) Schematic of the forming die for the 1050 MHz, 4mm thick cavity, (b) Different parts of the forming die.

Fig. 6.10 Q_0 vs E_{acc} in TM_{010} mode of 1050 MHz, $\beta = 0.49$ fine grain single cell cavity.

Fig. 6.11 Q_0 vs E_{acc} in TM_{010} mode of 1050 MHz, $\beta = 0.49$ large grain single cell cavity.

Fig. 6.12 R_s vs $1/T$ for TM_{010} mode of the cavity. Data points are fitted with BCS theory plus residual resistance (solid line fit curve).

Fig. 6.13 Radiation Pressure on Cavity wall at 5 MV/m accelerating gradient.

Fig. 6.14 Resonant frequency variation with E_{acc}^2.

Fig. 6.15 variation of $R_s - R_{s0}$ with B_p/B_C at 2 and 1.75K of the large grain cavity. Solid lines are fitted with Eqn.6.3.

Fig. 6.16 variation of $R_s - R_{s0}$ with B_p/B_C at 2K of the fine grain cavity. Solid lines are fitted with Eqn.6.5.