CONTENTS

Certificate
Declaration
Acknowledgement
List of Tables
List of Figures
List of Annexure
Abbreviations
Chapter 1
Introduction

1.1 In Vitro Propagation of Medicinal Plants
1.1.2 Advantages of Micropropagation
1.2 Importance of Plant Tissue Culture Technique for Production of Secondary Metabolites
1.2.1 Enhancement of Secondary Metabolites
1.2.2 Elicitors
1.2.3 Chitosan
1.3 Biological Significance of Saponins
1.3.1 Role in Plants
1.3.2 Biological Effects in Animals
1.3.2.1 Cell Membrane
1.3.2.2 Reproduction
1.3.2.3 Immune System
1.3.2.4 Virucidal Activity
1.3.2.5 Antioxidant Activity
1.3.2.6 Nervous System Functioning
1.4 High Performance Thin Layer Chromatography

References

Chapter 2
Literature Review of Plant.

2.1 Distribution.
2.2 Description of the Plant.
2.3 Traditional Uses.
2.4 General and Modern Uses.
2.5 Agrotechnology.
2.6 Phytochemical Studies.
2.7 Pharmacological Studies.
2.8 Tissue Culture Work Reported.

References

Chapter 3

Aims and Objectives

Experimental

Materials and Methods

Experiment 1 41-50
Pharmacognostical Evaluation of the Crude Drug
(i) Macroscopic Evaluation
(ii) Microscopic Evaluation
(iii) Physicochemical Evaluation
(iv) Foaming Index

Experiment 2 51
Determination of Saponin Content in the Crude Drug Samples of Chlorophytum borivilianum Collected from Various geographical regions

Experiment 3 52
In Vivo Studies on Cultivation of Chlorophytum borivilianum

Experiment 4 53-62
1. In vitro Initiation of callus of Chlorophytum borivilianum
2. Development of Independent Leaf Callus
3. Maintenance of Independently Developed leaf Callus
4. Growth Kinetics of Established Leaf Callus

Experiment 5 63-70
Studies on Regeneration of Plantlets of Chlorophytum borivilianum
(i) Regeneration of shoots from callus
(ii) Regeneration of Shoots from Nodal Explant

Experiment 6
Rooting of Regenerated Shoots

Experiment 7
Hardening of Regenerated Plantlets

Experiment 8
Studies on the Development of Suspension Cultures

Experiment 9
Enhancement of Secondary Metabolite Synthesis in Plant Cell Cultures

Experiment 10
(i) Qualitative Chemical Test for the Presence/Absence of Primary/Secondary Metabolites
(ii) Thin Layer Chromatography of Crude Extracts

Experiment 11
Determination of Total Phenolic Content

Experiment 12
Separation and Identification of Amino Acids in Natural plant parts and regenerated leaf cultures by Paper Chromatography

Experiment 13
Quantification of Sarsasapogenin in leaf, tuberous root, Regenerated leaf and regenerated tuberous roots of Chlorophytum borivilianum by HPTLC

Experiment 14
Biological Activity
a) Pharmacological Studies
 (i) Antiinflammatory Activity
 (ii) Analgesic Activity
 (iii) Immunomodulatory Activity
b) Microbiological Studies
(i) Antibacterial
(ii) Antifungal

Chapter 4
Results and Discussion
References

Chapter 5
Conclusion
List of Tables

Table 1: Some biotic elicitors used for production of secondary metabolites in plant suspension cultures.

Table 2: Effect of different chemicals on powdered drug (Leaf).

Table 3: Effect of different chemicals on powdered drug (Tuberous Root).

Table 4: Physicochemical Evaluation of the Crude Drug Chlorophytum borivilianum.

Table 5: Foaming index of *C. borivilianum* leaf and tuberous root.

Table 6: Determination of Saponin Content of crude drug collected from various Regions.

Table 7: Composition of MS basal medium.

Table 8: Effect of three chemical sterilants used for sterilization of leaf and nodal explants of *C. borivilianum*.

Table 9: Callus initiation on MS medium supplemented with growth regulators on different explants.

Table 10: Development of leaf and nodal explants in MS medium supplemented with various concentration and combination of plant growth hormones.

Table 11: Maintenance of leaf calli on MS medium supplemented with different hormonal combination.

Table 12: Growth kinetics of leaf callus on basal MS medium with 2, 4-D (3ppm) + Kin (1ppm).

Table 13: Shoot regeneration from Callus in basal MS medium supplemented with NAA.

Table 14: Effect of auxin 2, 4-D (3ppm) + Kin (1ppm) on nodal segment of *C. borivilianum* on Number of leaves.

Table 15: Effect of auxin 2, 4-D (3ppm) + Kn (1ppm) on nodal segment of *C. borivilianum* on Number of Shoots and shoot length.

Table 16: Effect of IBA on rooting in Basal MS Medium.

Table 17: Growth kinetics of suspension cultures of leaf callus.

Table 18: Packed Cell Volume and Cell Number of suspension cultures of leaf callus.

Table 19: Quantification of Sarsasapogenin in Elicitor Induced Suspension Cultures of *C. borivilianum*.
Table 20: Phytochemical screening of *in vivo* and *in vitro* powder of *C. borivilianum*.

Table 21: TLC Finger Print of Various Leaf Extracts.

Table 22: TLC Finger Print of Various Extracts of Tuberous Root.

Table 23: Standard Plot for Determination of Total Phenolic Content.

Table 24: Determination of Total Phenolic Content.

Table 25: To Study the separation and identification of amino acids in natural plant parts and *in vitro* cultures by paper chromatography.

Table 26: Quantification of Sarsasapogenin in different samples of *C. borivilianum*.

Table 27: Anti inflammatory activity of Methanolic extract of *C. borivilianum* on Carrageenin- induced Rat Paw Edema.

Table 28: Analgesic activity of Methanolic extract of *C. borivilianum* on Acetic Acid Induced Writhings in Mice.

Table 29: Composition of Alsever’s Solution

Table 30: Immunomodulatory Activity of Methanolic extract of *C. borivilianum* on different parts of Plant.

Table 31: Anti microbial activity of Methanolic extract on different parts of plant.
List of Figures

Fig. No: 1 Asparin A (1) and B (2)
Fig. No: 2 Asparoside A (1) and B (2)
Fig. No: 3 Adscendoside A (3) and Adscendoside B (4)
Fig. No: 4 Adscendin A (1) and Adscendin B (2)
Fig. No: 5 3-β-o-[β-D-2-tetracosylxylpyranosyl]-stigmasterol
Fig. No: 6 3-β-o-[β-D-glucopyranosyl (1-2)-α-L-arabinopyranosyl]-stigmasterol
Fig. No: 7 Sarsasapodenin
Fig. No: 8 Plant of Chlorophytum borivilianum
Fig. No: 9 Tuberous Root of C. borivilianum
Fig. No: 10.1 Adaxial surface of C. borivilianum
Fig. No: 10.2 Abaxial Surface of C. borivilianum
Fig. No: 11 Flowers of C. borivilianum
Fig. No: 12.1 Transverse Section of leaf through midrib with lamina.
Fig. No: 12.2 Transverse Section of leaf margin.
Fig. No: 13.1 Transverse Section of Lamina through lateral vein.
Fig. No: 13.2 A single lateral vascular bundle enlarged.
Fig. No: 14.1 Transverse Section of Leaf sheath entire view.
Fig. No: 14.2 Transverse Section of Leaf sheath middle part enlarged.
Fig. No: 14.3 Transverse Section of Leaf sheath marginal portion enlarged.
Fig. No: 15.1 Adaxial Epidermis.
Fig. No: 15.2 Abaxial Epidermis with Stomata.
Fig. No: 16 Raphide Distribution.
Fig. No: 17.1 Anatomy of Young Root Showing Cortex and Rhizodermis.
Fig. No: 17.2 A Sector of Stele.
Fig. No: 18.1 Transverse Section of Thin Root with Air Chamber.
Fig. No: 18.2 Portion of Thin Root Enlarged.
Fig. No: 19.1 Transverse Section of Mature Root.
Fig. No: 19.2 Portion of Stele Enlarged.
Fig. No: 20 Powder Microscopy of Leaf.
Fig. No: 21 Powder Microscopy of Tuberous Root.
Fig. No: 22 Initiation of callus on Basal MS + 2,4-D (1 ppm) + BAP (2 ppm) on Nodal Explant.

Fig. No: 23 Initiation of callus on Basal MS + 2,4-D (2 ppm) + BAP (2 ppm) on Nodal Explant.

Fig. No: 24 Initiation of callus on Basal MS + Kin (1 ppm) on leaf Explant.

Fig. No: 25 Initiation of callus on Basal MS + 2,4-D (3 ppm) + Kin (1 ppm) on leaf Explant.

Fig. No: 26 Initiation of callus on Basal MS + Kin (1 ppm) + NAA (1 ppm) on leaf Explant.

Fig. No: 27 Initiation of callus on Basal MS + Kin (1 ppm) + NAA (2 ppm) on leaf Explant.

Fig. No: 28 Initiation of callus on Basal MS + 2,4-D (2 ppm) + Kin (1 ppm) on leaf Explant.

Fig. No: 29 Initiation of callus on Basal MS + 2,4-D (2 ppm) + Kin (1 ppm) on Nodal Explant.

Fig. No: 30 Development of Independent Leaf calli on Basal MS + 2,4-D (3 ppm) + Kin (1 ppm).

Fig. No: 31 15 days old maintained leaf calli on Basal MS + 2,4-D (3 ppm) + Kin (1 ppm).

Fig. No: 32 30 days old maintained leaf calli on Basal MS + 2,4-D (2 ppm) + Kin (1 ppm).

Fig. No: 33 60 days old maintained leaf calli on Basal MS + 2,4-D (2 ppm) + Kin (1 ppm).

Fig. No: 34 90 days old maintained leaf calli on Basal MS + 2,4-D (2 ppm) + Kin (1 ppm).

Fig. No: 35 Growth kinetics of Static Cultures of C. borivilianum.

Fig. No: 36 Bar Graph of Increase in Fresh Weight of callus.

Fig. No: 37 Bar Graph of Increase in Dry Weight of callus.

Fig. No: 38 Regeneration of Shoots from leaf calli on Basal MS + NAA (0.1 ppm).

Fig. No: 39 3 weeks old regenerated shoots from leaf calli on Basal MS + NAA (0.1 ppm).
Fig. No: 40 Regeneration of Shoots from leaf calli on Basal MS +NAA (0.2ppm).

Fig. No: 41 3 weeks old regenerated shoots from leaf calli on Basal MS +NAA (0.2ppm).

Fig. No: 42 2 weeks old regenerated shoots from leaf calli on Basal MS +NAA (1ppm).

Fig. No: 43 3 weeks old regenerated shoots from leaf calli on Basal MS +NAA (1ppm).

Fig. No: 44 2 weeks old regenerated shoots from leaf calli on Basal MS +NAA (2ppm).

Fig. No: 45 3 weeks old regenerated shoots from leaf calli on Basal MS +NAA (2ppm).

Fig. No: 46 Number of shoots regenerated from callus.

Fig. No: 47 Length of shoots regenerated from callus.

Fig. No: 48 Regeneration of Leaves from nodal explant on Basal MS +Kn (1ppm).

Fig. No: 49 2 weeks old regenerated leaves from nodal explant on Basal MS +Kn (1ppm).

Fig. No: 50 4 weeks old regenerated leaves from nodal explant on Basal MS +Kn (1ppm).

Fig. No: 51 3 weeks old regenerated leaves from nodal explant on Basal MS +Kn (0.7ppm).

Fig. No: 52 5 weeks old regenerated leaves from nodal explant on Basal MS +Kn (0.7ppm).

Fig. No: 53 5 weeks old regenerated leaves from nodal explant on Basal MS +Kn (0.5ppm).

Fig. No: 54 5 weeks old regenerated leaves from nodal explant on Basal MS +Kn (0.2ppm).

Fig. No: 55 Regeneration of leaves from nodal explant on Basal MS +2, 4-D (3ppm) + Kn (1ppm).

Fig. No: 56 1 week old regenerated leaves from nodal explant on Basal MS + 2, 4-D (3ppm) + Kn (1ppm).
Fig. No: 57 5 weeks old regenerated leaves from nodal explant on Basal MS + 2, 4-D (3ppm) + Kin (1ppm).
Fig. No: 58 4 weeks old regenerated leaves from nodal explant on Basal MS + 2, 4-D (2ppm) + Kin (1ppm).
Fig. No: 59 5 weeks old regenerated leaves from nodal explant on Basal MS + 2, 4-D (1.5ppm) + Kin (1ppm).
Fig. No: 60 5 weeks old regenerated leaves from nodal explant on Basal MS + 2, 4-D (0.5ppm) + Kin (1ppm).
Fig. No: 61 Regeneration of leaves from nodal explant on Basal MS Medium.
Fig. No: 62 Regeneration of shoots from nodal explant on Basal MS + Kin (1ppm).
Fig. No: 63 3 weeks old regenerated shoots from nodal explant on Basal MS + Kin (1ppm).
Fig. No: 64 3 weeks old regenerated shoots from nodal explant on Basal MS + Kin (1ppm).
Fig. No: 65 1 week old regenerated shoots from nodal explant on Basal MS + 2, 4-D (3ppm) + Kin (1ppm).
Fig. No: 66 4 week old regenerated shoots from nodal explant on Basal MS + 2, 4-D (2ppm) + Kin (1ppm).
Fig. No: 67 5 weeks old regenerated leaves from nodal explant on Basal MS + 2, 4-D (1.5ppm) + Kin (1ppm).
Fig. No: 68 5 weeks old regenerated leaves from nodal explant on Basal MS + 2, 4-D (0.5ppm) + Kin (1ppm).
Fig. No: 69 Effect of kinetin on number of leaves.
Fig. No: 70 Effect of auxin and kinetin on number of leaves.
Fig. No: 71 Effect of kinetin on number of shoots.
Fig. No: 72 Effect of auxin and kinetin on number of shoots.
Fig. No: 73 Effect of kinetin on length of shoots.
Fig. No: 75 Induction of Roots on Basal MS + IBA (0.1ppm).
Fig. No: 76 Induction of Roots on Basal MS + IBA (0.5ppm).
Fig. No: 77 Induction of Roots on Basal MS + IBA (1ppm).
Fig. No: 78 Plants hardened in full strength Basal MS medium.
Fig. No: 79 Plants hardened in half strength Basal MS medium.
Fig. No: 80 Plantlets in half strength Basal MS medium for 21 days.
Fig. No: 81 Plantlets in one fourth strength Basal MS medium.
Fig. No: 82 Plantlets in one fourth strength Basal MS medium for 21 days.
Fig. No: 83 Plantlets transferred in Pots.
Fig. No: 84 Plantlets with well developed leaves.
Fig. No: 85 Growth Kinetics of Leaf Suspension of *C. borivilianum*.
Fig. No: 86 Bar Graph of Leaf Suspension Increase in Fresh Weight of *C. borivilianum*.
Fig. No: 87 Bar Graph of Leaf Suspension Increase in Dry Weight of *C. borivilianum*.
Fig. No: 88 Growth Kinetics of Leaf Suspension of *C. borivilianum* in terms of Packed Cell Volume.
Fig. No: 89 Bar Graph of Leaf Suspension of *C. borivilianum* in terms of Packed Cell Volume.
Fig. No: 90 Growth Kinetics of Leaf Suspension of *C. borivilianum* in terms of Number of Cell.
Fig. No: 91 Bar Graph of Leaf Suspension of *C. borivilianum* in terms of Number of cell.
Fig. No: 92 Standard Plot of Total Phenolic Content
Fig. No: 93 Bar Graph of Antiinflammatory Activity of *C. borivilianum*.
Fig. No: 94 Bar Graph of Percentage Inhibition of Methanolic extract of *C. borivilianum*.
Fig. No: 95 Analgesic Activity of Methanolic extract of *C. borivilianum*.
Fig. No: 96 Bar Graph of Percentage Inhibition (writhing) of Methanolic extract of *C. borivilianum*.
Fig. No: 97 Immunomodulatory Activity of Methanolic extract of *C. borivilianum* on different parts of Plant.
Fig. No: 98 Bar Graph of Antimicrobial Activity of Methanolic Extract of
C. borivilianum against Gram +ve and Gram –ve Organisms.

Fig. No:99 a Antibacterial Activity of Methanolic Extract of C. borivilianum against Gram +ve (Staphylococcus aureus) Organisms.

Fig. No:99 b Antibacterial Activity of Methanolic Extract of C. borivilianum against Gram –ve (Escherichia coli) Organisms.

Fig. No:100 Antifungal Activity of Methanolic Extract of C. borivilianum

Fig. No:100 b Control used for antifungal activity
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAP</td>
<td>N-6 Benzyl aminopurine.</td>
</tr>
<tr>
<td>BOD</td>
<td>Biological Oxygen Demand.</td>
</tr>
<tr>
<td>Conc.</td>
<td>Concentration.</td>
</tr>
<tr>
<td>DDW</td>
<td>Double Distilled Water.</td>
</tr>
<tr>
<td>2, 4-D</td>
<td>2, 4 dichlorophenoxy Acetic acid.</td>
</tr>
<tr>
<td>Fig</td>
<td>Figure.</td>
</tr>
<tr>
<td>FC</td>
<td>Folin and Ciocatteu</td>
</tr>
<tr>
<td>Gm</td>
<td>Grams.</td>
</tr>
<tr>
<td>HgCl₂</td>
<td>Mercuric Chloride.</td>
</tr>
<tr>
<td>HPTLC</td>
<td>High Performance Thin Layer Chromatography.</td>
</tr>
<tr>
<td>H</td>
<td>Hours.</td>
</tr>
<tr>
<td>IAA</td>
<td>3-Indole Acetic Acid.</td>
</tr>
<tr>
<td>IBA</td>
<td>3-Indolebutyric Acid.</td>
</tr>
<tr>
<td>JH</td>
<td>Jamia Hamdard.</td>
</tr>
<tr>
<td>Kin</td>
<td>Kinetin.</td>
</tr>
<tr>
<td>μg</td>
<td>Microgram</td>
</tr>
<tr>
<td>Mg</td>
<td>Milligram.</td>
</tr>
<tr>
<td>Mg⁻¹</td>
<td>Milligram per Liter.</td>
</tr>
<tr>
<td>Min.</td>
<td>Minutes.</td>
</tr>
<tr>
<td>MS</td>
<td>Murashige and Skoogs’ Medium.</td>
</tr>
<tr>
<td>NAA</td>
<td>Naphthalene Acetic Acid.</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts Per Million.</td>
</tr>
<tr>
<td>PTC</td>
<td>Plant Tissue Culture.</td>
</tr>
<tr>
<td>SRBC</td>
<td>Sheep Red Blood Cells.</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography.</td>
</tr>
<tr>
<td>Wks</td>
<td>Weeks.</td>
</tr>
</tbody>
</table>
List of Annexure

Annexure 1

Annexure 2
HPTLC Instrumental Summary Report of Quantification of Sarsasapogenin in Natural Leaf, Tuberous Root and in Regenerated Leaf Cultures of Chlorophyllum borivilianum.

Annexure 3
HPTLC Instrumental Summary Report of Quantification of Sarsasapogenin in Regenerated Tuberous roots of Chlorophyllum borivilianum