CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>vii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Overview of Wireless Communication 1
1.2 History of Microwave Communication 1
1.3 Introduction on Antennas 10
 1.3.1 Types of Antennas 11
 1.3.1.1 Wire Antennas 11
 1.3.1.2 Aperture Antennas 11
 1.3.1.3 Microstrip Antennas 12
 1.3.1.4 Array Antennas 13
 1.3.1.5 Latest Trend 14
1.4 Computational Electromagnetics 15
 1.4.1 Background 15
 1.4.2 Overview of Methods 16
 1.4.2.1 Method of Moments (MoM) 16
 1.4.2.2 Finite Element Method (FEM) 17
 1.4.2.3 Finite-Difference Time-Domain (FDTD) 18
 1.4.2.4 Transmission Line Matrix (TLM) 19
1.5 Motivation of the Research Work 20
1.6 Outline of Thesis 23
References 24

CHAPTER 2 REVIEW OF LITERATURE

2.1 Establishing DR as an Antenna 28
2.2 Multiband Operation 29
CHAPTER 3
DIELECTRIC RESONATOR ANTENNA

3.1 Dielectric Resonator Antennas

- 3.2 Advantages of DRAs
- 3.3 Rectangular DRA
- 3.4 Different Feed Techniques for DR
 - 3.4.1 Slot/Aperture Coupling
 - 3.4.2 Coaxial Probe Coupling
 - 3.4.3 Microstrip Transmission Line/ Proximity Coupling
 - 3.4.4 Coplanar Slot Feeds
 - 3.4.5 Waveguide Feed
- 3.5 Different DR Geometries
- 3.6 Characteristics of a Dielectric Resonator
 - 3.6.1 Dielectric Constant
 - 3.6.2 Quality Factor
- 3.7 Fabrication of the Dielectric Resonator
 - 3.7.1 Mixing and Grinding
 - 3.7.2 Calcination Process
 - 3.7.3 Pellet Shaping
 - 3.7.4 Sintering Process
 - 3.7.5 Surface Finishing
CHAPTER 4
EXPERIMENTAL AND SIMULATED STUDY OF ISOSCELES TRAPEZOIDAL DIELECTRIC RESONATOR ANTENNA

4.1. Lower band Operations 96

4.1.1. Design 1-1 (TE_{180}^{x} Mode) 96

4.1.1.1. Antenna Configuration 97

4.1.1.2. Effect of Microstip Feed Position of ITDRA 98

4.1.1.3. Results and Discussions 99

4.1.2. Design 1-2 (TE_{181}^{y} Mode) 106

4.1.2.1. Antenna Configuration 106

4.1.2.2. Effect of Microstip Feed Position of ITDRA 107

4.1.2.3. Results and Discussions 108

4.1.3. Design 1-3 (TE_{110}^{y} Mode) 114

References 88
4.1.3.1. Antenna Configuration 114
4.1.3.2. Effect of Microstrip Feed Position of ITDRA 115
4.1.3.3. Results and Discussions 116

4.2. Higher Band Operation 123
 4.2.1. Design 2-1 (TE_{211} Mode) 123
 4.2.1.1. Antenna Configuration 124
 4.2.1.2. Results and Discussions 125
 4.2.1.3. Comparison of Performance of Antennas in Design 1-1 to 2-1

4.3. Multi Band Operation 131
 4.3.1. Design 3-1 (Modes: TE_161 and TE_100) 131
 4.3.1.1. Antenna Configuration 132
 4.3.1.2. Effect of Microstrip Feed Position of ITDRA 133
 4.3.1.3. Results and Discussions 134

4.4. Dual Band Dual Polarization Operation 142
 4.4.1. Design 4-1 (Mode: TE_{116}) 142
 4.4.1.1. Introduction 142
 4.4.1.2. Antenna Configuration 144
 4.4.1.3. Results and Discussions 145
 4.4.1.4. Comparison of Performance of Antennas in Design 3-1 and 4-1

4.5. Broad Band Design 156
 4.5.1. Design 5-1 156
 4.5.1.1. Introduction 156
 4.5.1.2. Antenna Configuration 158
 4.5.1.3. Effect of Slots in Lowering Resonant Frequency 158
 4.5.1.4. Results and Discussions 159
 4.5.1.5. Wide Band Design Result with DR1 169
 4.5.2. Design 5-2 172
 4.5.2.1. Antenna Configuration 173
 4.5.2.2. Results and Discussions 176
 4.5.2.3. Wide Band Design Results Obtained with DR1 188
 4.5.2.4. Comparison of Performance of DR1 and DR2-in Design 5-2
4.5.2.5. Radiation from the Antenna Feed
4.5.3. Comparison of Radiation Characteristics of Broad Band Designs
4.6. Conclusion
References

CHAPTER 5 FINITE DIFFERENCE TIME DOMAIN METHOD
-A NUMERICAL ANALYSIS TECHNIQUE

5.1. Finite Difference Time Domain Method
 5.1.1. Details of the FDTD Method
 5.1.2. Applying the FDTD Method
 5.1.3. Effectiveness of FDTD Modeling
 5.1.4. Limitations of FDTD Modeling
5.2. Preliminary Facts and Computation
 5.2.1. FDTD Method in Computational Electromagnetics
 5.2.2. Basic Concepts
 5.2.3. Yee Algorithm
 5.2.4. Cell Size and Time Step
 5.2.5 Antenna Analysis
 5.2.5.1. Modeling Objects
 5.2.5.2. Source Signal
 5.2.5.3. Feed Modeling
 5.2.5.4. Absorbing Boundary Condition
 5.2.5.5. Parameters Chosen for the FDTD Analysis
 5.2.5.6. Algorithm Used in the Analysis
 5.2.5.7. Results
 5.2.5.7.1. Near Field Distribution
 5.3. Conclusion
References

CHAPTER 6 CONCLUSION AND FUTURE SCOPE

6.1 Scope of Future Work
APPENDIX –A

AN INVESTIGATION OF WIDEBAND CIRCULAR CYLINDRICAL SECTOR DIELECTRIC RESONATOR ANTENNA WITH MICROSTRIPLINE FEED

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1 Introduction</td>
<td>259</td>
</tr>
<tr>
<td>A.2 Proposed Geometry and Theory</td>
<td>260</td>
</tr>
<tr>
<td>A.3 Results and Discussion</td>
<td>262</td>
</tr>
<tr>
<td>A.4 Conclusion</td>
<td>266</td>
</tr>
<tr>
<td>References</td>
<td>266</td>
</tr>
</tbody>
</table>

APPENDIX –B

A NOVEL TECHNIQUE FOR REDUCING THE IMAGING DOMAIN IN MICROWAVE IMAGING OF TWO DIMENSIONAL CIRCULARLY SYMMETRIC SCATTERERS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1 Introduction</td>
<td>268</td>
</tr>
<tr>
<td>B.2 Formulation</td>
<td>270</td>
</tr>
<tr>
<td>B.3 Numerical Simulations and Discussions</td>
<td>273</td>
</tr>
<tr>
<td>B.4 Conclusion</td>
<td>280</td>
</tr>
<tr>
<td>References</td>
<td>280</td>
</tr>
</tbody>
</table>

List of Publications

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>283</td>
</tr>
</tbody>
</table>

Resume

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>287</td>
</tr>
</tbody>
</table>