LIST OF FIGURES

Figure- 1.1: The four components of soil; minerals and som make up the solid fraction, whereas air and water comprise the pore space fractions .. 2

Figure- 1.2: A general soil profile... 5

Figure- 1.3: Karnataka state map and the study area .. 11

Figure. 1.4: Location map of study area in mysore district ... 12

Figure- 1.5: Location map of study area in chamarajanagar district 13

Figure- 1.6: Location map of study area in mandya district .. 14

Figure- 2.1: Generalized geologic and tectonic map of indian shield 31

Figure- 2.2: Geology of the western and eastern dharwar craton .. 33

Figure- 2.3: Geological map of the western dharwar craton .. 36

Figure- 2.4: Geological map of western dharwar craton .. 37

Figure- 2.5: Geological map of sargur supracrustal suite .. 38

Figure- 2.6: Geological map of eastern dharwar craton ... 40

Figure- 2.7: Major soil groups of karnataka. ... 60

Figure- 2.8: Different soil orders of karnataka state .. 61

Figure- 2.9: Soil depth maps of study area .. 65

Figure- 2.10: Soil types of study area along with sample locations .. 67

Figure- 3.1: Geological map of study area .. 70

Figure- 3.2: Highly weathered amphibolite showing alcareous rich vein 74

Figure- 3.3: Amphibolite showing alteration of biotite along grain boundaries of hornblende and exsolved phases of opaques are found along the cleavage planes of hornblende .. 74

Figure.3.4: Profile showing the weathered enclaves of amphibolite within the weathered gneiss capped by red soil, Chikkahali area ... 76

Figure-3.5: Garnetiferrous amphibolite showing equigranular texture. 77

Figure-3.6: Garnetiferous amphibolite showing alteration of garnet grains to biotite. ... 77
Figure- 3.7: Note the intense sericitization of plagioclase in gneiss......................... 80
Figure- 3.8: Intense alteration of plagioclase to seicite alon cleavage planes in gneiss ... 80
Figure- 3.9: Magnesite bearing ultramafic rock showing different degrees of weathering, Doddakanya area... 82
Figure- 3.10: Magnesite bearing ultramafic rock, Doddakanya area.......................... 82
Figure- 3.11: Intense alteration of olivine to serpentine is observed............................ 84
Figure- 3.12: Intensely altered pyroxene to biotite showing deformational features in meta-pyroxenite. .. 86
Figure- 3.13: Honbelendite showing equigranular texture and notice the alteration of hornblende to biotite along cleavages planes and grain boundaries.......................... 87
Figure- 3.14: Quartzo-feldspathic rocks with top layer of red soil, Belagula area........... 89
Figure- 3.15: Alteration of feldspar showing in this photo... 89
Figure- 3.16: Biotite gneiss showing inclined folds, Belagula area. 91
Figure- 3.17: Biotite gneiss showing gneissic fabric, note the alteration of feldspars to sericite and muscovite... 91
Figure- 3.18: Silicate rock showing deformation feature in the form of isoclined folds, Bettadabidu area.. 94
Figure- 3.19: Calc-silicate rock showing equigranular fabric 94
Figure- 3.20: Calc-silicate rock showing alteration of cinopyroxene, biotite and feldspars .. 95
Figure- 3.21: Calc-silicate showing alteration of opaque phase to hydrous iron oxide...... 95
Figure- 3.22: Weathered zone of BIF and metapelitic rocks, Sargur area......................... 97
Figure- 3.23: Weathered red soils with metapelitic rocks, Sargur area 98
Figure- 3.24: Photograph showing N30°W–S30°E trending outcrop of the metapelites rock, Sargur area.. 100
Figure- 3.25: Recrystallization smaller grains of quartz surrounding the bigger porphyroblast in metapelites ... 100
Figure- 3.26: Amphibolite in sharp contact with BIF, Nagu dam 102
Figure- 3.27: Hornblende grains in amphibolite showing alteration to biotite along grain boundaries and cleavage planes and plagioclase showing alteration to sericite..... 102
Figure- 3.28: BIF with iron ore (hematite/magnetite) showing alteration to hydrous iron oxide (reddish brown color) with alternate layers of quartz................................. 104
Figure- 3.29: BIF showing alternate bands of sheared quartz and hematite indicating deformation. ... 104
Figure- 3.30: Quartzite showing sutured texture and recrystallization feature with iron oxide as cementing material and iron oxides are altered to hydrous iron oxide. 105
Figure- 3.31: Weathered bed rock of gneiss capped by red soil, Gundlupet area. 107
Figure- 3.32: Hornblende gneiss showing gneissic fabric .. 109
Figure 4.1: Paleosols profiles along the channels and road cuts 113
Figure- 4.2: Sieves with different mesh size to separate the soil particles. 114
Figure- 4.3: Cumulative curves (a, c, e) and histogram charts (b, d, f) of grain size distribution of top soils in three profiles of Chikkahali area. 118
Figure- 4.4: Cumulative curves (a, c) and histogram charts (b, d) of grain size distribution of top soils in three profiles of Belagula area .. 119
Figure- 4.5: Cumulative curves (a, c, e) and histogram charts (b, d, f) of grain size distribution of top soils in three profiles of Bettadabidu area 121
Figure- 4.6: Cumulative curves (a, c, e, g) and histogram charts (b, d, f, h) of grain size distribution of top soils in three profiles of Sargur area 122
Figure- 4.7: Cumulative curves (A) and histogram charts (B) of grain size distribution of top soils in three profiles of Gundlupet area .. 123
Figure. 4.8: Cumulative curves (a) and histogram charts (b) of grain size distribution of top soils in three profiles of Doddakanya area 124
Figure- 4.9: Folk’s classification system based on gravel (G), sand (S) and mud (M) ... 125
Figure- 4.10: Folk’s classification system based on sand, silt and clay. 125
Figure- 4.11: percentage of Gravel, Sand and Silt in different parent rocks. 125
Figure- 4.12: percentage of Sand, Silt and Clay in different parent rocks 125
Figure- 4.13: XRD patterns of soil samples weathered (B) and top soil (A) zone from Chikkahali ... 131
Figure- 4.14: XRD patterns of soil samples weathered (B) and top soil (A) zone from Chikkahali ... 132
Figure- 4.15: XRD patterns of soil samples from Chikkahali area 133
Figure- 4.16: XRD patterns of soil samples weathered (A) and top soil (B) zone from Belagula area .. 134
Figure- 4.17: XRD patterns of soil samples weathered (A) and top soil (B) zone from Belagula area .. 135
Figure- 4.18: XRD patterns of soil samples from Bettadabidu area...137
Figure- 4.19: XRD patterns of soil samples from Bettadabidu area...137
Figure- 4.20: XRD patterns of soil samples from Bettadabidu area...138
Figure- 4.21: XRD patterns of soil samples weathered (A) and top soil (B) zone from Sargur area. ……139
Figure- 4.22: XRD patterns of soil samples weathered (A) and top soil (B) zone from Sargur area. ……140
Figure- 4.23: XRD patterns of soil samples weathered (A) and top soil (B) zone from Sargur area. ……141
Figure- 4.24: XRD patterns of soil samples weathered (A) and top soil (B) zone from Sargur area. ……142
Figure- 4.25: XRD patterns of soil samples weathered (A) and top soil (B) zone from Gundlupet……143
Figure- 4.26: XRD patterns of soil samples from Doddakanya area...144

Figure- 5.1: Abundances and distribution of the major, minor and trace element of paleosols profiles; developed on different bed rocks in the Chikkahali area.181
Figure- 5.2: Abundances and distribution of major, minor and trace element of paleosols profiles; developed on different bed rocks in the Bettadabidu area......1822
Figure- 5.3: Abundances and distribution of major, minor and trace element of paleosols profiles; developed on different bed rocks in Gundlupet area..............183
Figure- 5.4: Abundances and distribution of major, minor and trace element developed on ultramafic rock in Doddakanya region...184
Figure- 5.5: Concentration ratio diagram for profile 1 (paleosols developed on amphibolite). ...191
Figure- 5.6: Concentration ratio diagram for profile 2 (paleosols developed on gneiss) 192
Figure- 5.7: Concentration ratio diagram for profile 3 (paleosols developed on quartzofeldspathic rock)...193
Figure- 5.8: Concentration ratio diagram for profile 4 (paleosols developed on calc-silicat rock). ..194
Figure- 5.9: Concentration ratio diagram for profile 5 (paleosols developed on amphibolite)..195
Figure- 5.10: Concentration ratio diagram for profile 6 (paleosols developed on hornblende gneiss) ...196
Figure- 5.11: Centration ratio diagram for profile 7 (paleosols developed on ultramafic rock)...197
Figure- 5.12: Plots of weight-percent ratios of SiO$_2$ to R$_2$O$_3$ in the all studied profiles. 198

Figure- 5.13: Variation of salinization values in the selected paleosol profiles in the study area. ... 204

Figure- 5.14: Variation of clayeyness values in the paleosol profiles in the study area. 205

Figure- 5.15: The calcification parameter variation in the paleosols developed on different parent rocks. ... 206

Figure- 5.16: The hydrolysis parameter variation in the paleosols developed on different parent rocks. .. 207

Figure- 5.17: The leaching parameter variation in the paleosols developed on different parent rocks. .. 207

Figure- 5.18: The variation of cia in the paleosols developed on different parent rocks. 209

Figure- 5.19: The variation of ciw in the paleosols developed on different parent rocks. .. 210