LIST OF FIGURES

1.1 : Typical glow discharge characteristic.
 Page no 12

1.2 : Cathode reaction during sputtering process.
 14

1.3 : Schematics of simplified DC sputtering system.
 18

1.4 : Effect of magnetic field on electron trapping.
 22

2.1 : Four point probe technique for measuring sheet resistance.
 38

2.2 : Van der - Pauw technique for measuring resistivity of arbitrarily
 shaped films.
 39

2.3 : Modes of MOS capacitor
 (a) Accumulation mode, (b) Depletion mode, (c) Inversion mode
 47

 (d) Variation of capacitance as a function of gate substrate voltage.
 48

3.1 : Planar magnetron sputtering system.
 55

3.2 : Detailed cross section of rectangular planar magnetron target using
 permanent magnets.
 57

3.3 : I-V characteristics of the zirconium cathode target at different argon
 pressure.
 71

3.4 : Variation of deposition rate versus current.
 72

3.5 : I-V characteristics of glow discharge at different nitrogen pressures.
 75

3.6 : Cathode potential versus nitrogen partial pressure for different target
 currents.
 76

3.7 : Variation of deposition rate as a function of nitrogen partial pressure
 for a constant current of 200 mA.
 78

3.8 : X-ray diffraction data for ZrN films at
 (a) Nitrogen partial pressure of 6×10^{-5} mbar
 (b) Nitrogen partial pressure of 7×10^{-5} mbar.
 79

3.9 : Variation of electrical resistivity of ZrN film as a function of nitrogen
 partial pressure.
 80

3.10 : X-ray diffraction patterns for ZrN films
 (a) as deposited (room temperature).
 (b) annealed at 350 °C
 (c) annealed at 550 °C
 83
3.11: Optical reflectance spectrum for ZrN films
 (a) as deposited (room temperature)
 (b) annealed at 350ºC
 (c) annealed at 550ºC

3.12: Variation of optical constants at a wavelength of 350 nm for ZrN film.

3.13: Scanning electron microscope image of ZrN films on silicon substrate
 (a) as deposited (room temperature)
 (b) annealed at 350 ºC
 (c) annealed at 550 ºC

3.14: Diffusion process in ZrN/Si structure (formation of alloy penetration pits).

4.1: Band bending diagram of metal-semiconductor contact.
 (a) metal-n-type semiconductor
 (b) metal-p-type semiconductor

4.2: Equivalent circuit of real Schottky diode, with series resistance R_s and parallel conductance G_p.

4.3: I-V characteristics of ZrN/Si Schottky structure (Sample-1).

4.4: I-V characteristics of ZrN/Si Schottky structure (sample-2).

4.5: Circuit used to calculate depletion capacitance at low frequencies.

4.6: Variation of depletion capacitance versus reverse bias voltage for sample-1.

4.7: Variation of depletion capacitance versus reverse bias voltage for sample-2.

4.8: I-V Characteristics of ZrN/Ge Schottky structure.

4.9: Variation of depletion capacitance versus reverse bias voltage for ZrN/Ge Schottky structure.

4.10: Current-voltage characteristics of ZrN/GaN structure at room temperature.

4.11: SEM Image of ZrN/Ge films as deposited.

4.12: SEM Image of ZrN/GaN films as deposited.

5.1: Trap charges in a MOS structure.

5.2: Capacitance–voltage characteristics of ZrN/TiO$_2$/p-Si MOS structure at 100 KHz.

5.3: Current density (A/cm2) versus electric field (V/cm) for ZrN/ TiO$_2$/p-Si MOS structure.
 (a) Forward bias (accumulation mode).
 (b) Reverse bias (inversion mode).
5.4 : Graph of log I versus $V^{1/2}$ for ZrN/TiO$_2$/p-Si structure. 129
5.5 : Plot of I/D against V/d^2 for ZrN/TiO$_2$/p-Si structure. 130
5.6 : Variation of capacitance as a function frequency for ZrN/TiO$_2$/p-Si structure. 131
5.7 : Capacitance–voltage characteristics of Al/TiO$_2$/p-Si MOS structure at 100KHz 133
5.8 : Current (A) versus Voltage (V) of Al/TiO$_2$/p-Si MOS structure 133
5.9 : C-V characteristics of MIM capacitor at 100 KHz. 135
5.10 : I-V characteristics of MIM capacitor. 135
5.11 : Log I versus $V^{1/2}$ for MIM structure. 136