LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Location of the study sites and insets are in the maps of India and Gujarat</td>
<td>30</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>The TLC system with UV-visualization chamber</td>
<td>70</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Cropwise use of different formulation of pesticides in Rajkot taluka</td>
<td>81</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Cropwise use of different formulation of pesticides in Gondal taluka</td>
<td>83</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Cropwise use of different formulation of pesticides in Jetpur taluka</td>
<td>85</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Comparison of pesticides use-pattern at the selected study sites</td>
<td>85</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Cropwise consumption liquid formulation of pesticides at different study sites</td>
<td>91</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>Cropwise consumption of powder formulation of pesticides at different study sites</td>
<td>91</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>Growth of bacterial isolates in LB broth amended with ES</td>
<td>115</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>Growth of bacterial isolates in LB broth amended with CP</td>
<td>116</td>
</tr>
<tr>
<td>Figure 5.9</td>
<td>Growth of bacterial isolates in LB broth amended with both ES and CP</td>
<td>118</td>
</tr>
<tr>
<td>Figure 5.10</td>
<td>Growth of bacterial isolates in M9 broth amended with ES</td>
<td>119</td>
</tr>
<tr>
<td>Figure 5.11</td>
<td>Growth of bacterial isolates in M9 broth amended with CP</td>
<td>121</td>
</tr>
<tr>
<td>Figure 5.12</td>
<td>Growth of bacterial isolates in M9 broth amended with both ES and CP</td>
<td>122</td>
</tr>
<tr>
<td>Figure 5.13</td>
<td>Effect of temperature on the growth of ES-tolerant bacterial isolates</td>
<td>124</td>
</tr>
<tr>
<td>Figure 5.14</td>
<td>Effect of temperature on the growth of CP-tolerant bacterial isolates</td>
<td>125</td>
</tr>
<tr>
<td>Figure 5.15</td>
<td>Effect of pH on the growth of ES-tolerant bacterial isolates</td>
<td>127</td>
</tr>
<tr>
<td>Figure 5.16</td>
<td>Effect of pH on the growth of CP-tolerant bacterial isolates</td>
<td>128</td>
</tr>
<tr>
<td>Figure 5.17</td>
<td>Optimum temperature and pH values for the growth of bacterial isolates</td>
<td>129</td>
</tr>
<tr>
<td>Figure 5.18</td>
<td>Standard calibration curve of ES prepared using D-TLC</td>
<td>132</td>
</tr>
<tr>
<td>Figure 5.19</td>
<td>Standard calibration curve of CP prepared using D-TLC</td>
<td>132</td>
</tr>
<tr>
<td>Figure 5.20</td>
<td>TLC plate showing spots of endosulfan at six different concentration, viz. 2, 4, 8, 12, 16 and 20 mg/L (Spot 1 to 6)</td>
<td>133</td>
</tr>
<tr>
<td>Figure 5.21</td>
<td>TLC plate showing spots of endosulfan at six different concentration, viz. 5, 10, 15, 20, 25 and 30 mg/L (Spot 1 to 6)</td>
<td>133</td>
</tr>
<tr>
<td>Figure 5.22</td>
<td>TLC plate showing spots of chlorpyrifos at six different concentration, viz. 2, 4, 8, 12, 16 and 20 mg/L (Spot 1 to 6)</td>
<td>134</td>
</tr>
<tr>
<td>Figure 5.23</td>
<td>TLC plate showing spots of chlorpyrifos at six different concentration, viz. 5, 10, 15, 20, 25 and 30 mg/L (Spot 1 to 6)</td>
<td>134</td>
</tr>
</tbody>
</table>
Figure 5.24 ES degradation by bacterial isolates in NB in response to treatment duration 138
Figure 5.25 ES degradation by bacterial isolates in SS in response to treatment duration 138
Figure 5.26 ES degradation by bacterial isolates in N-broth in response to culture volume 140
Figure 5.27 ES degradation by bacterial isolates in soil slurry in response to culture volume 140
Figure 5.28 ES degradation by bacterial mixed cultures in N-broth in response to treatment duration 143
Figure 5.29 ES degradation by bacterial mixed cultures in soil slurry in response to treatment duration 143
Figure 5.30 ES degradation by bacterial mixed cultures in N-broth in response to culture volume 145
Figure 5.31 ES degradation by bacterial mixed cultures in soil slurry in response to culture volume 145
Figure 5.32 CP degradation by bacterial isolates in N-broth in response to treatment duration 149
Figure 5.33 CP degradation by bacterial isolates in soil slurry in response to treatment duration 149
Figure 5.34 CP degradation by bacterial isolates in N-broth in response to culture volume 151
Figure 5.35 CP degradation by bacterial isolates in soil slurry in response to culture volume 151
Figure 5.36 CP degradation by bacterial mixed cultures in N-broth in response to treatment duration 154
Figure 5.37 CP degradation by bacterial mixed cultures in soil slurry in response to treatment duration 154
Figure 5.38 CP degradation by bacterial mixed cultures in NB in response to culture volume 156
Figure 5.39 CP degradation by bacterial mixed cultures in SS in response to culture volume 156
Figure 5.40 Total Ion Chromatogram (TIC) for ES containing soil slurry sample treated with bacterial mono-culture (JCE-4) for a period of 10 days. 158
Figure 5.41 Mass spectrum for ES in test sample treated with bacterial mono-culture (JCE-4) and standard sample from Wiley Registry of Mass Spectral Data version-7 158
Figure 5.42 Total Ion Chromatogram (TIC) for ES containing soil slurry sample treated with bacterial mixed-culture (JCEC-423) for a period of 10 days. 159
Figure 5.43 Mass spectrum of ES in test sample treated with bacterial mixed-culture (JCEC-423) and standard sample from Wiley Registry of Mass Spectral Data version-7 159
Figure 5.44 Total Ion Chromatogram (TIC) for CP containing soil slurry sample treated with bacterial mono-culture (GCC-3) for a period of 10 days. 161
Figure 5.45 Mass spectrum of CP in test sample treated with bacterial mono-
culture (GCC-3) and standard sample from NIST 07 mass spectral
database.

Figure 5.46 Total Ion Chromatogram (TIC) for CP containing soil slurry
sample treated with bacterial mixed-culture (GCC-134) for a period
of 10 days.

Figure 5.47 Mass spectrum for Chlorpyrifos in test sample treated with
bacterial mixed-culture (GCC-134) and standard sample from NIST
07 mass spectral database.

Figure 5.48 Effect of temperature on ES degradation by bacterial isolates in soil
slurry

Figure 5.49 Effect of temperature on CP degradation by bacterial isolates in soil
slurry

Figure 5.50 Effect of temperature on ES degradation by bacterial mixed
cultures in soil slurry

Figure 5.51 Effect of temperature on CP degradation by bacterial mixed
cultures in soil slurry

Figure 5.52 Effect of pH on ES degradation by bacterial isolates in soil slurry

Figure 5.53 Effect of pH on CP degradation by bacterial isolates in soil slurry

Figure 5.54 Effect of pH on ES degradation by bacterial mixed cultures in soil
slurry

Figure 5.55 Effect of pH on CP degradation by bacterial mixed cultures in soil
slurry

Figure 5.56 Effect of aeration on ES and CP degradation by bacterial isolates

Figure 5.57 Effect of aeration on ES and CP degradation by bacterial mixed
cultures

Figure 5.58 Effect of organic amendments on ES degradation by bacterial
monocultures

Figure 5.59 Effect of organic amendments on CP degradation by bacterial
monocultures

Figure 5.60 Effect of organic amendments on ES degradation by bacterial
mixed-cultures

Figure 5.61 Effect of organic amendments on CP degradation by bacterial
mixed-cultures

Figure 5.62 Effect of moisture on degradation of ES and CP by bacterial
monocultures

Figure 5.63 Effect of moisture on degradation of ES and CP by bacterial mixed-
cultures

Figure 5.64 Cellulase activity in soil inoculated with GCE345 in presence of ES

Figure 5.65 Cellulase activity in soil inoculated with GCC134 in presence of
CP

Figure 5.66 Cellulase activity in soil inoculated with GCE345 and GCC134
in presence of both ES and CP

Figure 5.67 Dehydrogenase activity in soil inoculated with GCE345 in presence
of ES

Figure 5.68 Dehydrogenase activity in soil inoculated with GCC134 in presence
of CP
Figure 5.69 Dehydrogenase activity in soil inoculated with GCE345 and GCC134 in presence of both ES and CP

Figure 5.70 Protease activity in soil inoculated with GCE345 in presence of ES

Figure 5.71 Protease activity in soil inoculated with GCC134 in presence of CP

Figure 5.72 Protease activity in soil inoculated with GCE345 and GCC134 in presence of both ES and CP

Figure 5.73 The scatter plot of % degradation of ES vs. treatment duration in N-broth

Figure 5.74 The scatter plot of % degradation of ES vs. treatment duration in soil slurry

Figure 5.75 The scatter plot of % degradation of CP vs. treatment duration in N-broth

Figure 5.76 The scatter plot of % degradation of CP vs. treatment duration in soil slurry

Figure 5.77 The scatter plot of % degradation of ES vs. culture volume in N-broth

Figure 5.78 The scatter plot of % degradation of ES vs. culture volume in soil slurry

Figure 5.79 The scatter plot of % degradation of CP vs. culture volume in N-broth

Figure 5.80 The scatter plot of % degradation of CP vs. culture volume in soil slurry

Figure 5.81 The scatter plot of % degradation of ES in N-broth vs. temperature

Figure 5.82 The scatter plot of % degradation of ES in soil slurry vs. temperature

Figure 5.83 The scatter plot of % degradation of CP in N-broth vs. temperature

Figure 5.84 The scatter plot of % degradation of CP in soil slurry vs. temperature

Figure 5.85 The scatter plot of % degradation of ES in N-broth vs. pH

Figure 5.86 The scatter plot of % degradation of ES in soil slurry vs. pH

Figure 5.87 The scatter plot of % degradation of CP in N-broth vs. pH

Figure 5.88 The scatter plot of % degradation of CP in soil slurry vs. pH

Figure 5.89 Suggested design for an effective bioremediation of pesticides
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Three categories of pesticides based on volatilization behaviour</td>
<td>05</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Classification of pesticides with regard to their persistence</td>
<td>05</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Soil persistency (half-life) of some commonly used pesticides</td>
<td>06</td>
</tr>
<tr>
<td>Table 1.4</td>
<td>Important chemical and physical properties of endosulfan</td>
<td>11</td>
</tr>
<tr>
<td>Table 1.5</td>
<td>Important chemical and physical properties of chlorpyrifos</td>
<td>14</td>
</tr>
<tr>
<td>Table 1.6</td>
<td>Advantages and disadvantages of different types of bioremediation strategies</td>
<td>25</td>
</tr>
<tr>
<td>Table 1.7</td>
<td>Mechanisms of energy generation by the microbes</td>
<td>26</td>
</tr>
<tr>
<td>Table 1.8</td>
<td>Geographical location and other information about study site Rajkot district</td>
<td>29</td>
</tr>
<tr>
<td>Table 1.9</td>
<td>Agro-climatic features of Rajkot Taluka</td>
<td>32</td>
</tr>
<tr>
<td>Table 1.10</td>
<td>Agro-climatic parameters of Gondal and Jetpur Talukas</td>
<td>33</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Anaerobic degradation of some pollutants by different bacteria</td>
<td>42</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Some of the hazardous pesticides commonly used in India</td>
<td>44</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Different parameters of Gas Chromatography (GC-2010)</td>
<td>71</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Value of different parameter of GC-MS-QP2010</td>
<td>71</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>The value of different parameters of MS</td>
<td>72</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Temperature program used in GC-MS analysis</td>
<td>72</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Pressure program used in GC-MS analysis</td>
<td>72</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Qualitative survey on crop-wise pesticide use pattern in Rajkot Taluka</td>
<td>80</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Qualitative survey on crop-wise pesticide use pattern in Gondal Taluka</td>
<td>82</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Qualitative survey on crop-wise pesticide use pattern in Jetpur Taluka</td>
<td>84</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Quantitative survey on crop-wise pesticide use pattern in Rajkot Taluka</td>
<td>88</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Quantitative survey on crop-wise pesticide use pattern in Gondal Taluka</td>
<td>89</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>Quantitative survey on crop-wise pesticide use pattern in Jetpur Taluka</td>
<td>90</td>
</tr>
</tbody>
</table>

VI
Table 5.7 Pesticide tolerant (10 mg/L) bacterial isolates from cultivated fields of selected talukas

Table 5.8 The MIC of pesticide tolerant selected bacterial isolates

Table 5.9 Pesticide adaptation of bacterial isolates (mono-culture) at room temperature under static condition in terms of growth response

Table 5.10 Pesticide adaptation of bacterial isolates (mono-culture) at room temperature under shaking condition (130 rpm) in terms of growth response

Table 5.11 Pesticide adaptation of mixed-cultures at room temperature in terms of growth response

Table 5.12 Pesticide adaptation of mixed-cultures at RT under shaking (130 rpm) condition in terms of growth response

Table 5.13 Population of bacterial isolates in N-agar plates supplemented with pesticides

Table 5.14 Important physicochemical properties of soil samples used for the screening of pesticide tolerant bacterial isolates

Table 5.15 Physical and morphological characterization of the bacterial isolates

Table 5.16 Gram staining behaviour, biochemical characterization and identification of the bacterial isolates

Table 5.17 Growth response of bacterial isolates (mono-culture) in presence of endosulfan (10 mg/L) on different media at room temperature

Table 5.18 Growth response of bacterial isolates (mono-culture) in presence of chlorpyrifos (10 mg/L) on different media at room temperature

Table 5.19 Growth response of bacterial isolates (mono-culture) in presence of both ES and CP (10 mg/L of each) on different media at RT

Table 5.20 Growth response of mixed-cultures of Rajkot, Gondal and Jetpur talukas in presence of ES (10 mg/L) on different media at RT

Table 5.21 Growth response of mixed-cultures of Rajkot, Gondal and Jetpur talukas in presence of CP (10 mg/L) on different media at RT

Table 5.22 Growth response of mixed-cultures of Rajkot, Gondal and Jetpur talukas in presence of both ES & CP (10 mg/L of each) on different media at RT

Table 5.23 Growth of bacterial isolates in LB broth amended with ES (20 mg/L) at RT under shaking condition (130 rpm)

Table 5.24 Growth of bacterial isolates in LB broth amended with CP (20 mg/L) at RT under shaking condition (130 rpm)

Table 5.25 Growth of bacterial isolates in LB broth amended with both ES & CP (20 mg/L of each) at RT under shaking condition (130 rpm)

Table 5.26 Growth of bacterial isolates in M9 broth amended with ES (20 mg/L) at RT under shaking condition (130 rpm)

Table 5.27 Growth of bacterial isolates in M9 broth amended with CP (20 mg/L) at RT under shaking condition (130 rpm)
Table 5.28 Growth of bacterial isolates in M9 broth amended with both ES & CP (20 mg/L of each) at RT under shaking condition (130 rpm) 122
Table 5.29 Effect of temperature on the growth of endosulfan tolerant bacterial isolates 124
Table 5.30 Effect of temperature on the growth of chlorpyrifos tolerant bacterial isolates 125
Table 5.31 Effect of pH on the growth of endosulfan tolerant bacterial isolates 127
Table 5.32 Effect of pH on the growth of chlorpyrifos tolerant bacterial isolates 128
Table 5.33 Optimum temperature and pH conditions for the growth of bacterial isolates 129
Table 5.34 Recovery of endosulfan from N-broth and soil slurry 131
Table 5.35 Recovery of chlorpyrifos from N-broth and soil slurry 131
Table 5.36 Bioremediation of ES by selected bacterial isolates in response to treatment duration 137
Table 5.37 Bioremediation of ES by selected bacterial isolates in response to culture volume 139
Table 5.38 Bioremediation of ES by bacterial mixed cultures in response to treatment duration 142
Table 5.39 Bioremediation of ES by bacterial mixed cultures in response to culture volume 144
Table 5.40 Bioremediation of CP by selected bacterial isolates in response to treatment duration 148
Table 5.41 Bioremediation of CP by selected bacterial isolates in response to culture volume 150
Table 5.42 Bioremediation of CP by bacterial mixed cultures in response to treatment duration 153
Table 5.43 Bioremediation of CP by bacterial mixed cultures in response to culture volume 155
Table 5.44 Effect of temperature on bioremediation of ES and CP by selected bacterial isolates in soil slurry 164
Table 5.45 Effect of temperature on bioremediation of ES and CP by bacterial mixed cultures in soil slurry medium 166
Table 5.46 Effect of pH on bioremediation of ES and CP by selected bacterial isolates in soil slurry medium 169
Table 5.47 Effect of pH on bioremediation of ES and CP by bacterial mixed cultures in soil slurry 171
Table 5.48 Effect of aeration on bioremediation of ES and CP by bacterial isolates 174
Table 5.49 Effect of aeration on bioremediation of ES and CP by mixed bacterial cultures 174
Table 5.50 Effect of amendments on bioremediation of ES and CP by selected bacterial isolates in soil slurry 177
Table 5.51 Effect of amendments on bioremediation of ES and CP by bacterial mixed cultures in soil slurry 179
Table 5.52 Effect of moisture on bioremediation of ES and CP by bacterial isolates 182
Table 5.53 Effect of moisture on bioremediation of ES and CP by mixed bacterial cultures 182
Table 5.54 Changes in cellulase activity in soil inoculated with GCE345 in presence of ES 186
Table 5.55 Changes in cellulase activity in soil inoculated with GCC134 in presence of CP 187
Table 5.56 Changes in cellulase activity in soil inoculated with GCE345 and GCC134 in presence of both ES and CP 188
Table 5.57 Dehydrogenase activity in soil inoculated with GCE345 in presence of ES 191
Table 5.58 Dehydrogenase activity in soil inoculated with GCC134 in presence of CP 192
Table 5.59 Changes in dehydrogenase activity in soil inoculated with GCE345 and GCC134 in presence of both ES and CP 193
Table 5.60 Changes in protease activity in soil inoculated with GCE345 in presence of ES 196
Table 5.61 Changes in protease activity in soil inoculated with GCC134 in presence of CP 197
Table 5.62 Changes in protease activity in soil inoculated with GCC134 in presence of CP 198
Table 5.63 Regression model structures for ES bioremediation using mono- and mixed-cultures 212
Table 5.64 Regression model structures for CP bioremediation using mono- and mixed-cultures 213