Chapter-4: Perfect Domination

Chapter-4:

PERFECT DOMINATION
Perfect Domination is closely related to Perfect Codes and Perfect Codes have been used in Coding Theory. In this chapter we study the effect of removing a vertex from the graph on perfect domination.

Definition-4.1: Perfect dominating set.[42]

A subset S of $V(G)$ is said to be a perfect dominating set if for each vertex v not in S, v is adjacent to exactly one vertex of S.

Consider the path P_4 with four vertices $1,2,3,4$. The set $S = \{2, 3\}$ is perfect dominating set in this graph.

It may be noted that if G is a graph then $V(G)$ is always a perfect dominating set of G.

Definition-4.2: Minimal perfect dominating set.

A perfect dominating set S of the graph G is said to be minimal perfect dominating set if for each vertex v in S, $S-\{v\}$ is not a perfect dominating set.

It may be noted that it is not necessary that a proper subset of minimal perfect dominating set is not a perfect dominating set.

Example-4.3:

Consider the cycle graph $G = C_6$ with six vertices $1, 2, 3, 4, 5, 6$. Then obviously $V(G)$ is a minimal perfect dominating set of G.

However the set $\{1, 4\}$ is proper subset of $V(G)$ and is a perfect dominating set in the graph G.

93
Definition-4.4: Minimum perfect dominating set.

A perfect dominating set with smallest cardinality is called minimum perfect dominating set. It is called γ_{pf} set of the graph G.

Definition-4.5: Perfect domination number.

The cardinality of a minimum perfect dominating set is called the perfect domination number of the graph G. It is denoted as $\gamma_{pf}(G)$.

The perfect domination number of cycle C_6 is 2 and that of the path P_3 is also 1.

Definition-4.6: Perfect private neighborhood.

Let S be a subset of $V(G)$ and $v \in S$. Then the perfect private neighborhood of v with respect to S is

$$P_{pf}[v,S] = \{ w \in V(G) - S: N(w) \cap S = \{v\} \} \cup \{ v, \text{ if } v \text{ is adjacent to no vertex of } S \text{ or at least } \text{vertices of } S \}.$$

Theorem-4.7: A perfect dominating set S of G is minimal perfect dominating set if and only if for each vertex v in S $P_{pf}[v,S]$ is non-empty.

Proof:

Suppose S is minimal and $v \in S$. Therefore there is a vertex w not in $S\{v\}$ such that either w is adjacent to no vertex of $S\{v\}$ or w is adjacent to at least two vertices of $S\{v\}$.

If $w = v$ then this implies that $v \in P_{pf}[v,S]$.

If $w \neq v$ then it is impossible that w is adjacent to at least two vertices of $S\{v\}$ because S is a perfect dominating set. Therefore w is not adjacent to any vertex of $S\{v\}$. Since S is a perfect dominating set w is adjacent to only v in S. That is $N(w) \cap S = \{v\}$. Thus, $w \in P_{pf}[v,S]$.

94
Conversely suppose \(v \in S \) and \(P_{pf}[v,S] \) contains some vertex \(w \) of \(G \).

If \(w = v \) then \(w \) is either adjacent to at least two vertices of \(S-\{v\} \) or \(w \) is adjacent to no vertex of \(S-\{v\} \). Thus, \(S-\{v\} \) is not a perfect dominating set.

If \(w \neq v \) then \(N(w) \cap S = \{v\} \) implies that \(w \) is not adjacent to any vertex of \(S-\{v\} \).

Thus, in all cases \(S-\{v\} \) is not a perfect dominating set if \(v \in S \). Thus, \(S \) is minimal.

Example-4.8:

Consider the path \(G = P_5 \) (See Figure-0.4) with five vertices \(v_1, v_2, v_3, v_4, v_5 \).

Note that \(S = \{v_2, v_5\} \) is minimum and therefore minimal perfect dominating set.

\[P_{pf}[v_2,.S] = \{v_1, v_2, v_3\}. \]

Now we define the following symbols.

\[V^+_{pf} = \{v \in V(G): \gamma_{pf}(G) < \gamma_{pf}(G-v)\}. \]

\[V^-_{pf} = \{v \in V(G): \gamma_{pf}(G) > \gamma_{pf}(G-v)\}. \]

\[V^0_{pf} = \{v \in V(G): \gamma_{pf}(G) = \gamma_{pf}(G-v)\}. \]

Note that the above sets are mutually disjoint and their union is \(V(G) \).

Now we prove the following lemma.

Lemma-4.9: Let \(v \in V(G) \) and suppose \(v \) is a pendent vertex and \(w \) has a neighbor \(w \) of degree at least two. If \(v \in V^-_{pf} \) then \(\gamma_{pf}(G-v) = \gamma_{pf}(G) - 1. \)

Proof:

Let \(S_1 \) be a minimum perfect dominating set of \(G-\{v\} \). If \(w \in S_1 \) then \(S_1 \) is a perfect dominating set of \(G \) with \(|S_1| < \gamma_{pf}(G) \). That is \(\gamma_{pf}(G) \leq |S_1| < \gamma_{pf}(G) \), this is a contradiction. Therefore \(w \notin S_1 \). Let \(S = S_1 \cup \{w\} \). Then \(S \) is a minimum perfect dominating set of \(G \). Therefore \(\gamma_{pf}(G) = |S| = |S_1| + 1 = \gamma_{pf}(G-v) + 1. \)

This proves the lemma.
Next we prove the necessary and sufficient conditions for a pendent vertex (with a neighbor of degree at least two) to be in V_{pf}^+.

Theorem-4.10: Let v be a vertex of G Then $v \in V_{pf}^+$ if and only if the following conditions are satisfies.

1. v belongs to every γ_{pf} set of G.
2. No subset S of $G-\{v\}$ which is either disjoint from $N[v]$ or intersects $N[v]$ in at least two vertices and $|S| \leq \gamma_{pf}(G)$ can be a perfectly dominating set of $G-\{v\}$.

Proof:

1. Suppose $v \in V_{pf}^+$. Suppose S is a γ_{pf} set of G which does not contain v then S is a perfect dominating set of $G-\{v\}$. Therefore $\gamma_{pf}(G-v) \leq |S| = \gamma_{pf}(G)$. Thus, $v \notin V_{pf}^+$. This is a contradiction. Thus, v must belong to every γ_{pf} set of G.

2. If there is set S which satisfies the condition stated in (2). Then S is a perfect dominating set of $G-\{v\}$ and therefore $\gamma_{pf}(G-v) \leq \gamma_{pf}(G)$. This is a contradiction.

Conversely assume that (1) and (2) hold.

Suppose $v \in V_{pf}^0$. Let S be a minimum perfect dominating set of $G-\{v\}$. Then $|S| = \gamma_{pf}(G)$.

Suppose v is not adjacent to any vertex of S. Then S is disjoint from $N[v]$, $|S| = \gamma_{pf}(G)$ and S is a perfectly dominating set of $G-\{v\}$. This violates (2).

Suppose v is adjacent to exactly one vertex of S then S is a minimum perfect dominating set of G not containing v which violates (1).
Suppose \(v \) is adjacent to at least two vertices of \(S \). Then \(S \cap N[v] \) in at least two vertices and \(S \) is a perfectly dominating set of \(G-\{v\} \) with \(|S| = \gamma_{pf}(G) \), which again violate (2).

Thus, \(v \in V_{pf}^0 \) implies (1) or (2) violated.

Suppose \(v \in V_{pf} \). Let \(S_1 \) be a minimum perfect dominating set of \(G-\{v\} \). Then \(|S_1| < \gamma_{pf}(G) \). If \(v \) is not adjacent to any vertex of \(S_1 \) then as above (2) is violated.

If \(v \) is adjacent to exactly one vertex of \(S_1 \) then \(S_1 \) is a perfect dominating set of \(G \) with \(|S_1| < \gamma_{pf}(G) \) – which is a contradiction.

If \(v \) is adjacent to at least two vertices of \(S_1 \) then \(S_1 \cap N[v] \) in at least two vertices, \(|S_1| \leq \gamma_{pf}(G) \) and \(S_1 \) is a perfect dominating set of \(G-\{v\} \) – which again violates (2).

Thus, \(v \in V_{pf} \) implies that (2) is violated.

Thus, \(v \) does not belongs to \(V_{pf}^0 \) or \(V_{pf}^- \). Hence \(v \in V_{pf}^+ \).

Theorem 4.11: Let \(v \) be a pendent vertex which has the neighbor \(w \) of degree at least two then \(v \in V_{pf}^- \) if and only if there is \(\gamma_{pf} \) set \(S \) containing \(w \) and not containing \(v \) such that \(P_{pf}[w, S] = \{v\} \).

Proof:

Suppose \(v \in V_{pf}^- \). Let \(S_1 \) be a minimum perfect dominating set of \(G-\{v\} \). Then as proved Lemma 4.9, \(w \notin S_1 \). Let \(S = S_1 \cup \{w\} \). Then \(S \) is \(\gamma_{pf} \) containing \(w \).

Since \(S_1 \) is a perfect dominating set of \(G-\{v\} \), \(w \) is adjacent to some vertex of \(S_1 \). Therefore \(w \notin P_{pf}[w, S] \). If \(x \) is any vertex different from \(v \) such that \(x \) is adjacent to \(w \) then \(x \) is also adjacent to some vertex of \(S_1 \) because \(S_1 \) is a perfect dominating set of \(G-\{v\} \). Thus, \(x \notin P_{pf}[w, S] \). Further \(v \) is adjacent to only \(w \) of \(S \) therefore \(P_{pf}[w, S] = \{v\} \).
Conversely suppose there is a γ_{pf} set S containing w such that $P_{pf}[w,S] = \{v\}$. Let $S_1 = S - \{w\}$. Let x be any vertex of $G-\{v\}$ which is not in $S-\{v\}$. Since $x \notin P_{pf}[w,S]$, x must be adjacent to some unique vertex S_1. Thus, S_1 is a minimum perfect dominating set of $G-\{v\}$ with $|S_1| < \gamma_{pf}(G)$. Thus, $v \in V_{pf}$. □

Example-4.12:
Consider the path $G= P_4$ with vertices 1,2,3,4. Then $\gamma_{pf}(G) = 2$. Let $v = 1$ and $w = 2$.

Now $\gamma_{pf}(G-1) = 1$. Thus, $1 \in V_{pf}$ also $S = (2, 3)$ is γ_{pf} set of G, containing $w = 2$ and $P_{pf}[2,S] = \{1\}$.

Theorem-4.13: Let S_1 and S_2 be two disjoint perfect dominating sets of G. Then $|S_1| = |S_2|

Proof:
For every vertex x in S_1 there is a unique vertex $v(x)$ in S_2 which is adjacent to x. Also for every vertex y in S_2 there is a unique vertex $u(y)$ in S_1 which is adjacent to y. It may be noted that these functions are inverses of each other. Therefore $|S_1| = |S_2|$. □

Corollary-4.14: If in a graph G there are perfect dominating sets S_1 and S_2 such that $|S_1| \neq |S_2|$ then $S_1 \cap S_2 \neq \phi$. □

Corollary-4.15: Let G be a graph with n vertices. If there is a perfect dominating set S with $|S| < n/2$ or $\geq n/2$ then $V(G) - S$ is not a perfect dominating set. □