LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No</th>
<th>Title</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 3.1</td>
<td>Structure of RF Capacitance probe.</td>
<td>28</td>
</tr>
<tr>
<td>Fig 3.2</td>
<td>Functional diagram of Liquid Level System (LLS)</td>
<td>32</td>
</tr>
<tr>
<td>Fig 3.3</td>
<td>Functional diagram of Air Flow Temperature System (AFTS)</td>
<td>35</td>
</tr>
<tr>
<td>MATERIALS AND METHODS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESIGN OF FRACTIONAL ORDER CONTROLLER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 4.1</td>
<td>Block diagram representation of a Fractional order PI(^b) controller with an Integer order process</td>
<td>37</td>
</tr>
<tr>
<td>Fig 4.2</td>
<td>Block diagram representation of a First order controller with a Fractional order process</td>
<td>40</td>
</tr>
<tr>
<td>REAL TIME IMPLEMENTATION OF FRACTIONAL ORDER CONTROLLER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 5.1</td>
<td>Graphical relation between liquid level and level transmitter output current</td>
<td>47</td>
</tr>
<tr>
<td>Fig 5.2</td>
<td>Graphical relation between water bath temperature and RTD output current</td>
<td>48</td>
</tr>
<tr>
<td>Fig 5.3</td>
<td>Graphical relation between DAC output current and SCR conducting angle output signal (in terms of voltage)</td>
<td>49</td>
</tr>
<tr>
<td>Fig 5.4</td>
<td>Graphical relation between Air Flow Rate and Air Flow Regulator position.</td>
<td>50</td>
</tr>
<tr>
<td>Fig 5.5</td>
<td>(K(P) - K(I)) Plane for (\lambda = 0.5) for LLS</td>
<td>53</td>
</tr>
<tr>
<td>Fig 5.6</td>
<td>(K(P) - K(I)) Plane for (\lambda = 0.7) for AFTS</td>
<td>58</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig 6.1</td>
<td>LLS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of + 05% at the operating point level of 40%.</td>
<td>63</td>
</tr>
<tr>
<td>Fig 6.2</td>
<td>LLS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of -- 05% at the operating point level of 40%.</td>
<td>63</td>
</tr>
</tbody>
</table>
Fig 6.3
LLS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of +10% at the operating point level of 40%.

Fig 6.4
LLS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of --10% at the operating point level of 40%.

Fig 6.5
LLS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of +05% at the operating point level of 55%.

Fig 6.6
LLS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of --05% at the operating point level of 55%.

Fig 6.7
LLS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of +10% at the operating point level of 55%.

Fig 6.8
LLS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of --10% at the operating point level of 55%.

Fig 6.9
LLS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of +05% at the operating point level of 70%.

Fig 6.10
LLS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of --05% at the operating point level of 70%.

Fig 6.11
LLS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of +10% at the operating point level of 70%.

Fig 6.12
LLS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of --10% at the operating point level of 70%.

Fig 6.13
AFTS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of --10% at the operating point level of 70%.
size of + 05°C at the operating temperature of 45 °C

Fig 6.14 AFTS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of -- 05°C at the operating temperature of 45 °C

Fig 6.15 AFTS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of + 10 °C at the operating temperature of 45 °C

Fig 6.16 AFTS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of -- 10 °C at the operating temperature of 45 °C

Fig 6.17 AFTS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of + 05°C at the operating temperature of 50 °C

Fig 6.18 AFTS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of -- 05°C at the operating temperature of 50 °C

Fig 6.19 AFTS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of + 10 °C at the operating temperature of 50 °C

Fig 6.20 AFTS: Real time servo responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers for the step size of -- 10 °C at the operating temperature of 50 °C

Fig 6.21 LLS: Real time Load responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers at the operating point level of 40%.

Fig 6.22 LLS: Real time Load responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers at the operating point level of 55%.

Fig 6.23 AFTS: Real time Load responses of Fractional order PI, ZN-PI, CDM-PI, HUANG-PI controllers at the operating temperature of 45 °C

Fig 6.24 AFTS: Real time Load responses of Fractional order
Design and Implementation of Fractional Order Controllers in Chemical Processes

PI, ZN-PI, CDM-PI, HUANG-PI controllers at the operating temperature of 50° C

Fig 6.25 General Stability region for the First order controller ($x_3 = 0$) 88

Fig 6.26 Step responses for different values of (x_1, x_2) for the First order controller ($x_3 = 0$) 96

Fig 6.27 The Global Stability Region in the space of (x_1, x_2, x_3) 97

Fig 6.28 The General Stability region for the First order controller ($x_3 = 0$) 100

Fig 6.29 The Global Stability region which is composed of the general stability regions for various x_3 values. 101

APPENDIX-II

Fig A-II—1 . LLS : ($K_p - K_1$) plane for $\lambda = 0.1$ 124
Fig A-II—2 . LLS : ($K_p - K_1$) plane for $\lambda = 0.2$ 124
Fig A-II—3 . LLS : ($K_p - K_1$) plane for $\lambda = 0.3$ 124
Fig A-II—4 . LLS : ($K_p - K_1$) plane for $\lambda = 0.4$ 124
Fig A-II—5 . LLS : ($K_p - K_1$) plane for $\lambda = 0.6$ 124
Fig A-II—6 . LLS : ($K_p - K_1$) plane for $\lambda = 0.7$ 124
Fig A-II—7 . LLS : ($K_p - K_1$) plane for $\lambda = 0.8$ 125
Fig A-II—8 . LLS : ($K_p - K_1$) plane for $\lambda = 0.9$ 125
Fig A-II—9 . LLS : ($K_p - K_1$) plane for $\lambda = 1.0$ 125
Fig A-II—10 . LLS : ($K_p - K_1$) plane for $\lambda = 1.1$ 125
Fig A-II—11 . LLS : ($K_p - K_1$) plane for $\lambda = 1.2$ 125
Fig A-II—12 . LLS : ($K_p - K_1$) plane for $\lambda = 1.3$ 125
Fig A-II—13 . LLS : ($K_p - K_1$) plane for $\lambda = 1.4$ 126
Fig A-II—14 . LLS : ($K_p - K_1$) plane for $\lambda = 1.5$ 126
Fig A-II—15 . LLS : ($K_p - K_1$) plane for $\lambda = 1.6$ 126
Fig A-II—16 . LLS : ($K_p - K_1$) plane for $\lambda = 1.7$ 126
Fig A-II—17 . LLS : ($K_p - K_1$) plane for $\lambda = 1.8$ 126
Fig A-II—18 . LLS : ($K_p - K_1$) plane for $\lambda = 1.9$ 126
Fig A-II—19 . AFTS : ($K_p - K_1$) plane for $\lambda = 0.1$ 127
Fig A-II—20. AFTS : (K_p - K_I) plane for λ = 0.2

Fig A-II—21. AFTS : (K_p - K_I) plane for λ = 0.3

Fig A-II—22. AFTS : (K_p - K_I) plane for λ = 0.4

Fig A-II—23. AFTS : (K_p - K_I) plane for λ = 0.5

Fig A-II—24. AFTS : (K_p - K_I) plane for λ = 0.6

Fig A-II—25. AFTS : (K_p - K_I) plane for λ = 0.8

Fig A-II—26. AFTS : (K_p - K_I) plane for λ = 0.9

Fig A-II—27. AFTS : (K_p - K_I) plane for λ = 1.0

Fig A-II—28. AFTS : (K_p - K_I) plane for λ = 1.1

Fig A-II—29. AFTS : (K_p - K_I) plane for λ = 1.2

Fig A-II—30. AFTS : (K_p - K_I) plane for λ = 1.3

Fig A-II—31. AFTS : (K_p - K_I) plane for λ = 1.4

Fig A-II—32. AFTS : (K_p - K_I) plane for λ = 1.5

Fig A-II—33. AFTS : (K_p - K_I) plane for λ = 1.6

Fig A-II—34. AFTS : (K_p - K_I) plane for λ = 1.7

Fig A-II—35. AFTS : (K_p - K_I) plane for λ = 1.8

Fig A-II—36. AFTS : (K_p - K_I) plane for λ = 1.9

PLATE NO

Plate 1 VMAT-01 Data Acquisition card 30

Plate 2 Computer interfaced Liquid Level System 31

Plate 3 Computer interfaced Air Flow Temperature System (AFTS) 34