Chapter 4

Some rational integers as representatives of equivalence classes having their recurred inverses

4.1 Introduction

In this chapter an elaborate attempt has been made to determine the inverse of a rational integer, which in turn is a recurring one with a recurred set, independent of \(p \).

If we consider the polynomial \(p(x) = ax - e_0; a = \{a_i\}, x, e_0 \in \Omega_p \) with \(a_0 \neq 0 \) then \(p'(x) = a \). As \(a_0 \neq 0 \) it follows from the Hensel's lemma that any root of \(p(x) \equiv 0 \) (mod \(p \)) can be improved to a root of mod \(p^n(n \geq 2) \). But \(ax \equiv e_0 \) (mod \(p \)) gives an infinite set of Diophantine equations together with a carry-out sequence, denoted by \([ax \equiv e_0 \text{ (mod } p)\]). In the sense of incongruence, unique solution of each of the Diophantine equations exist, which will provide the inverse of \(a \in \Omega_p \). We have to workout the process of solving Diophantine equations obtained from \(ax \equiv e_0 \) (mod \(p \)) in order, because the carry-out element for \((k+1)^{th}\) equation is generated during the process of solving \(k^{th} \) equation. Solving this set of equations up-to any desired step one can approximate the \(I_p(a) \) (inverse of \(a \) in \(\Omega_p \)) up-to any degree of \(p \). But the complete determination of \(I_p(a) \) is possible, if it happens to be a recurring \(p \)-adic integer. It may so happen that \(I_p(a) \) is recurring one but the order of the recurred set \(R \) is dependent on \(p \) [Theorem 4.3.5 (b)]. In order to make it more fascinating, in the next section we have made an attempt to identify those rational integers \(a \) for which \(I_p(a) \) is not only a recurring \(p \)-adic integer but also its recurred set \(R \) is independent of \(p \).

At this point, let us define a relation in the field of \(p \)-adic numbers \(\mathbb{Q}_p \) by,

\[
x \sim y \text{ if and only if } x = e_ky \text{ for some } k \geq -n_0 \text{ where } x, y \in \mathbb{Q}_p.
\]
The relation ~ so defined is an equivalence relation in \(\mathbb{Q}_p \), for

\[
x = e_0x \text{ and hence } x \sim x \text{ for any } x \in \mathbb{Q}_p
\]

\[
x \sim y \Rightarrow x = e_ky \text{ for some } k \geq -n_0 \Rightarrow y = e_{-k}x \Rightarrow y \sim x
\]

and

\[
x \sim y \text{ and } y \sim z \Rightarrow x = e_ny \text{ and } y = e_nz \text{ for some } m, n \geq -n_0 \Rightarrow x = e_{m+n}z \Rightarrow x \sim z
\]

On the other hand, \(I_p(e_kx) = e_{-k}I_p(x) \). Thus if for some rational integer \(x \) we can prove that \(I_p(x) \) is recurred one with a recurred set \(R \) which is independent of \(p \) then the inverse of each member of the equivalence class \([x] \) will be a recurred one with a \(p \) independent recurred set. In the third section of this chapter we have determined a number of rational integers which can be considered as representatives of such equivalence classes. Again the inception of the concept **Functionally Recurred** has added an extra dimension to the carry-out sequences under scrutiny. In the course of development it has been seen that \([ax \equiv e_0 \pmod{p}] \) happens to be functionally recurred in general.

4.2 Some definitions

Definition 4.2.1. A \(p \)-adic integer \(x = \{x_i\} \) is said to be a recurring \(p \)-adic integer of degree \(n \) if the terms of \(x \) after the \(n^{th} \) term satisfy the following:

\[
\begin{align*}
x_n &= x_{n+m} = x_{n+2m} = \ldots \\
x_{n+1} &= x_{n+m+1} = x_{n+2m+1} = \ldots \\
&\vdotswithin{=} \\
x_{n+m-1} &= x_{n+2m-1} = x_{n+3m-1} = \ldots
\end{align*}
\]

Then we write \(x = \{x_0, x_1, \ldots, x_{n-1}, R\} \) where \(R = (x_n, x_{n+1}, \ldots, x_{n+m-1}) \). The elements \(x_0, x_1, \ldots, x_{n-1} \) are said to be the leading elements and the set \(R \) is said to be the recurred set for \(x \), which is obviously an ordered set.

If an element \(x_0 \) (say) occupies \(k \) numbers of consecutive positions in the recurred set \(R \) then we write, \(R = (x_n, x_{n+k}, x_{n+k+1}, \ldots, x_{n+m-1}) \). We follow the same convention for the set of leading elements too.

Clearly a recurring \(p \)-adic integer is completely determined by its leading elements and by the recurred set \(R \).
Definition 4.2.2. A p-adic integer $x = \{x_t\}$ is said to be a functionally recurred p-adic integer of degree n and of order m if $x = \{x_0, x_1, \ldots, x_{n-1}, R_0, R_1, \ldots\}$ where $R_0 = (x_n, x_{n+1}, \ldots, x_{n+m-1})$ and for any $k \geq 1$ there exists a one to one function $f_k : R_0 \mapsto R_k$ such that

$$f_k(x_{n+i}) = x_{n+k+m+i} \quad ; \quad 0 \leq i \leq m - 1.$$

We denote such a functionally recurred p-adic integer as $\langle (x_0, x_1, \ldots, x_{n-1}, R_0) ; f_k \rangle$. In case of a functionally recurred p-adic integer of degree 0, we simply write $(R_0; f_k)$.

We follow the same notational convention for the leading elements and the elements in the recurred sets R_k as in case of recurring p-adic integers.

Remark 4.2.3. For the complete determination of a functionally recurred p-adic integer we have to go through the following steps:

- To identify the leading elements $x_0, x_1, \ldots, x_{n-1}$ provided they do exist.
- To determine the elements of the recurred set R_0.
- To determine a one to one function $f_k : R_0 \mapsto R_k$ for any $k \geq 1$.

Remark 4.2.4. It should be noted that every recurring p-adic integer is a functionally recurred one under the identity map.

Definition 4.2.5. For $k \geq -n_0$ where n_0 is a positive integer, we define $e_k = \{x_t\} \in \mathbb{Q}_p$ by

$$x_k = 1 \quad \text{and} \quad x_i = 0 \quad \forall i \neq k$$

Remark 4.2.6. Clearly for $k \geq 0, e_k \in \Omega_p$ and

$$e_k = \{0^k, 1, R\} \quad \text{where} \quad R = (0)$$

It follows that e_k is a recurring p-adic integer of degree $k+1$ with the recurred set R of order 1.

By the Definition 3.2.3 of multiplication in Ω_p it is easy to see that,

$$e_i e_j = e_{i+j} \quad \text{and} \quad p e_i = e_{i+1} \quad \forall i, j$$

Definition 4.2.7. We define $e = \{x_t\} \in \Omega_p$ by $x_i = 1 \quad \forall i = 0, 1, 2, 3, \ldots$ Clearly e is a recurring p-adic integer of degree 0 with the recurred set $R = (1)$ and $e = \sum_{i \geq 0} e_i$.

54
Definition 4.2.8. For any $\alpha \in B = \{0, 1, 2, 3, \ldots, p-1\}$ and for any $x = \{x_i\} \in \Omega_p$ we define,

$$ax = y \iff \alpha x_i + b_i = b_{i+1}p + y_i \quad \forall i = 0, 1, 2, \ldots \text{ with } b_0 = 0$$

where $b = \{b_i\}$ is the carry-out sequence $[ax]$.

If we take $\alpha = \{\alpha, R\}$ with the recurred set $R = (0)$ then the product ax defined above will coincide with the product in the ring Ω_p.

In general, the carry-out sequence $[ax]$ of ax for arbitrary α does not belong to Ω_p. However the following theorem provides the conditions on the scalar α, so that the carry-out sequence $[ax] \in \Omega_p$.

Theorem 4.2.9. For any $\alpha \in B = \{0, 1, 2, \ldots, p-1\}$ and for any $x \in \Omega_p$ the carry-out sequence $[\alpha x] \in \Omega_p$.

Proof: If $\alpha = 0$ then $[ax] = 0$ and therefore we are through.

Let us take $\alpha \neq 0$ and let $[\alpha x] = b, \alpha x = y$.

$$\therefore \alpha x_i + b_i = b_{i+1}p + y_i \quad \forall i = 0, 1, 2, \ldots \text{ with } b_0 = 0. \quad (4.2.1)$$

Clearly, $b_0 = 0 < \alpha$. If possible let $b_1 > \alpha$ so that

$$b_1p + y_0 > \alpha p + y_0$$

i.e. $\alpha x_0 > \alpha p + y_0$ using (1) for $i = 0$.

i.e. $\alpha(x_0 - p) > y_0$, a contradiction.

Assuming $b_m \leq \alpha$, we try to show that $b_{m+1} \leq \alpha$.

If $b_{m+1} > \alpha$ then

$$b_{m+1}p + y_m > \alpha p + y_m$$

i.e. $b_m > \alpha(p - x_m) + y_m > \alpha$
This contradicts our initial assumption that $b_m \leq \alpha$.

Thus by induction, $b_i \leq \alpha < p \quad \forall i = 0, 1, 2, 3, \ldots$

This completes the proof.

In the following result we have determined a recurring relation among $I_p(p-1), I_p(2)$ and $I_q(2)$ for two consecutive primes p and q.

Theorem 4.2.10. If p, q be two consecutive primes $(p > q)$ with $(2n - 1)$ number of composites between them, then

$$I_p(p-1) + I_p(2) = (n-1)e + I_q(2).$$

Proof: If we take $I_p(2) = x$ and $I_p(p-1) = y$ then

$$x_0 = \frac{p+1}{2}, \quad x_i = \frac{p-1}{2} \quad \forall i \geq 1$$

and $$y_0 = p-1, \quad y_i = p-2 \quad \forall i \geq 1$$

Taking $x+y=z$ and $|x+y|=b$ we obtain,

$$x_i + y_i + b_i = b_{i+1} + z_i \quad \forall i = 0, 1, 2, 3, \ldots \text{ with } b_0 = 0. \quad (4.2.2)$$

Substituting $i = 0$ in equation (4.2.2) we obtain,

$$z_0 + b_1p = p + (n - 1) + \frac{q+1}{2} \quad [\because p = q + 2n]$$

$$\therefore z_0 = (n - 1) + \frac{q+1}{2}, \quad b_1 = 1$$

Again substituting $i = 1$ in equation (4.2.2) we obtain,

$$z_1 + b_2p = p + (n - 1) + \frac{q-1}{2}$$

$$\therefore z_1 = (n - 1) + \frac{q-1}{2}, \quad b_2 = 1 \text{ and so on.}$$
Continuing this process,

\[z_i = (n - 1) + \frac{q - 1}{2} \quad \forall i \geq 1 \]

This completes the proof.

4.3 Some equivalence classes represented by rational integers having inverses with a recurred set independent of \(p \)

All results in this section are used to determine those rational integers \(a \) for which \(I_p(a) \) is a recurring \(p \)-adic integer with a recurred set, the order of which is independent of \(p \). In the second part of Theorem 4.3.5 the existence of a rational integer \(\alpha \) has been shown for which \(I_p(\alpha) \) is a recurring \(p \)-adic integer but the order of the recurred set is dependent of \(p \). An attempt has always been made to incorporate the carry-out sequences with those results whenever their beautiful forms are found.

Theorem 4.3.1. In the ring of \(p \)-adic integers \(\Omega_p \), the following results hold good:

(a) For \(p > 2 \), \(I_p(2) \) is a recurring \(p \)-adic integer of degree 1 and the order of the recurred set is 1 i.e. \(I_p(2) = \left\{ \frac{p+1}{2}, R \right\} \) where \(R = \left(\frac{p-1}{2} \right) \). Moreover,

\[[2x \equiv e_0 \pmod{p}] = \{0, R'\} \quad \text{where,} \quad R' = (1) \]

(b) If \(2\alpha = p + 1 \) then \(I_p(\alpha) \) is a recurring \(p \)-adic integer of degree 1 and the order of the recurred set \(R \) is 2 i.e. \(I_p(\alpha) = \{2, R\} \) where \(R = (p - 2, 1) \). Moreover,

\[[\alpha x \equiv e_0 \pmod{p}] = \{0, R'\} \quad \text{where,} \quad R' = (1, \alpha - 1) \]

(c) \(I_p(p - 1) \) is a recurring \(p \)-adic integer of degree 1 and the order of the recurred set \(R \) is 1 i.e. \(I_p(p - 1) = \{p - 1, R\} \) where \(R = (p - 2) \). Moreover,

\[[(p - 1)x \equiv e_0 \pmod{p}] = \{0, R'\} \quad \text{where,} \quad R' = R \]

Proof: (a) The relation \(2x \equiv e_0 \pmod{p} \) gives,
\[2x_0 \equiv 1 \pmod{p} \implies x_0 = \frac{p+1}{2}, \quad b_1 = 1\]

\[2x_1 + 1 \equiv 0 \pmod{p} \implies x_1 = \frac{p-1}{2}, \quad b_2 = 1\]

\[2x_2 + 1 \equiv 0 \pmod{p} \implies x_2 = \frac{p-1}{2}, \quad b_3 = 1 \quad \text{and so on.}\]

\[\therefore J_p(2) = \left\{ \frac{p+1}{2}, R \right\} \quad \text{where} \quad R = \left(\frac{p-1}{2} \right)\]

and

\[\left[2x \equiv e_0 \pmod{p} \right] = \{0, R\} \quad \text{where} \quad R = (1)\]

(b) The relation \(\alpha x \equiv e_0 \pmod{p}\) gives,

\[\alpha x_0 \equiv 1 \pmod{p} \implies x_0 = 2, \quad b_1 = 1\]

\[\alpha x_1 \equiv 0 \pmod{p} \implies x_1 = p - 2, \quad b_2 = \alpha - 1\]

\[\alpha x_2 + \alpha - 1 \equiv 0 \pmod{p} \implies x_2 = 1, \quad b_3 = 1 \quad \text{and so on.}\]

\[\therefore J_p(\alpha) = \{2, R\} \quad \text{where} \quad R = (p - 2, 1)\]

and \([\alpha x \equiv e_0 \pmod{p}] = \{0, R'\} \quad \text{where} \quad R' = (1, \alpha - 1)\]

(c) The relation \((p-1)x \equiv e_0 \pmod{p}\) gives,

\[(p-1)x_0 \equiv 1 \pmod{p} \implies x_0 = p - 1, \quad b_1 = p - 2\]

\[(p-1)x_1 + (p-2) \equiv 0 \pmod{p} \implies x_1 = p - 2, \quad b_2 = p - 2 \quad \text{and so on.}\]

\[\therefore J_p(p-1) = \{p - 1, R\} \quad \text{where} \quad R = (p - 2)\]

and \([(p-1)x \equiv e_0 \pmod{p}] = \{0, R'\} \quad \text{where} \quad R' = R.\]
Corollary 4.3.2. (i) From (b) we obtain,

\[I_p \left(\frac{p+1}{2} \right) = \{2, R\} \quad \text{where} \quad R = (p - 2, 1) \]

(ii) If \(p, q \) be any two primes such that \(2q = p + 3 \) then \(I_q(q - 1) = I_p(2) \)

(iii) \(e + I_p(p - 1) = 0 \) and hence

\[I_p(e) = -(p - 1)e_0 = e_0 + (p - 1) \sum_{i \geq 1} e_i \]

(iv) \(I_p(e_0 + (p - 2)e_1) = \{1, R\} \quad \text{where} \quad R = (2, 3, 4, \ldots, p - 1, 0) \)

Moreover the carry-out sequence \([e^2] \) is functionally recurred one of degree 1 and of order \((p - 1)\).

Proof: As \((p - 1)^2 = e_0 + (p - 2)e_1\), it follows that

\[I_p(e_0 + (p - 2)e_1) = I_p(p - 1)I_p(p - 1) = e.e \]

Suppose that \(x = e = y \quad \text{and} \quad xy = z \quad \text{with} \quad [xy] = b. \)

From definition it follows that

\[z_i + b_{i+1}p = \sum_{j+k=i} x_j y_k + b_i \quad \forall i = 0, 1, 2, \ldots \quad \text{with} \quad b_0 = 0 \]

As \(\sum_{j+k=i} x_j y_k = (i + 1) \) the above relation can be written as

\[z_i + b_{i+1}p = (i + 1) + b_i \quad \forall i = 0, 1, 2, \ldots \quad \text{with} \quad b_0 = 0 \quad (4.3.1) \]

Substituting \(i = 0, 1, \ldots, (p - 1) \) in equation \((4.3.1)\) we obtain

\[z_0 + b_1p = 1 + 0.p \quad \Rightarrow \quad z_0 = 1 \quad ; \quad b_1 = 0 \]
\[z_1 + b_2p = 2 + 0.p \quad \Rightarrow \quad z_1 = 2 \quad ; \quad b_2 = 0 \]
\[\ldots \]
\[z_{p-2} + b_{p-1}p = (p - 1) + 0.p \quad \Rightarrow \quad z_{p-2} = p - 1 \quad ; \quad b_{p-1} = 0 \]
\[z_{p-1} + b_{p}p = 0 + 1.p \quad \Rightarrow \quad z_{p-1} = 0 \quad ; \quad b_{p} = 1 \]
Again by the substitution $i = p, p + 1, \ldots, 2p - 2$ in equation (4.3.1) we obtain

$$z_p + b_{p+1}p = 2 + 1.p \Rightarrow z_p = 2 \quad ; \quad b_{p+1} = 1$$

$$z_{p+1} + b_{p+2}p = 3 + 1.p \Rightarrow z_{p+1} = 3 \quad ; \quad b_{p+2} = 1$$

$$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$$

$$z_{2p-3} + b_{2p-2}p = (p - 1) + 1.p \Rightarrow z_{2p-3} = (p - 1) ; \quad b_{2p-2} = 1$$

$$z_{2p-2} + b_{2p-1}p = 0 + 2.p \Rightarrow z_{2p-2} = 0 \quad ; \quad b_{2p-1} = 2$$

and so on.

If we take $R_0 = \{b_i : 0 \leq i \leq (p-1)\}$ then for $k \geq 1$ the function $f_k : R_0 \mapsto R_k$ defined by

$$f_k(b_i) = k \quad 1 \leq i \leq (p-1)$$

will establish that the carry-out sequence $[c^2] = b$ is functionally recurred and therefore $[c^2] = (0, R_0 ; f_k)$ where $|R_0| = (p - 1)$.

This completes the proof.

Remark 4.3.3. If we take $I_p(e_0 + (p - 1)e_1 + (p - 2)e_2) = x = \{x_i\}$ then

$$x_i = \begin{cases}
(i + 1) \pmod{p} & \text{if } 0 \leq i \leq (p - 1) \\
(i + n) \pmod{p} & \text{if } (n - 1)p - (n - 2) \leq i \leq n(p - 1) \text{ and } n(\geq 2) \in \mathbb{N}
\end{cases}$$

Corollary 4.3.4. For $p \geq 3$, $I_p(e_0 + (p - 1)e_1 + (p - 2)e_2)$ is a recurring one of degree $2(p-1)$

and $I_p(e_0 + (p - 1)e_1 + (p - 2)e_2) = \{1^2, 2^2, \ldots, (p - 1)^2, R\}$ where

$$R = (0, 1, 2^2, \ldots, (p - 1)^2)$$

Proof: We have,

$$e_0 + (p - 1)e_1 + (p - 2)e_2 = (p - 1)^2(e_0 + e_1)$$
\[I_p(e_0 + (p-1)e_1 + (p-2)e_2) = I_p(p-1).I_p(p-1).I_p(e_0 + e_1) = e^2 I_p(e_0 + e_1) \]

Suppose that \(x = e^2 = I_p(e_0 + (p-2)e_1) \) and \(y = I_p(e_0 + e_1) \).

\[: x_i = \begin{cases}
(i + 1) \pmod{p} & \text{if } 0 \leq i \leq (p-1) \\
(i + n) \pmod{p} & \text{if } (n-1)p - (n-2) \leq i \leq n(p-1) \text{ and } n \geq 2 \in \mathbb{N}
\end{cases} \]

and

\[y_i = \begin{cases}
1 & \text{if } i = 0 \\
p - 1 & \text{if } i \text{ is odd} \\
0 & \text{if } i \text{ is even}
\end{cases} \]

Let \(xy = z \) and \([xy] = b \). It follows from the definition that

\[z_i + b_{i+1}.p = \sum_{j+k=i} x_jy_k + b_i \quad \forall i = 0, 1, 2, \ldots \text{ with } b_0 = 0. \]

Considering the form of \(y \), the above relation can be put into the following form

\[z_i + b_{i+1}.p = \begin{cases}
x_i + (p-1) \sum_{s=1}^{\frac{i}{2}} x_{2s-1} + b_s & \text{if } i \text{ is even} \\
x_i + (p-1) \sum_{s=0}^{\frac{i-1}{2}} x_{2s} + b_s & \text{if } i \text{ is odd}
\end{cases} \quad (4.3.2) \]

Substituting \(i = 0, 1, \ldots, 7 \) in equation (4.3.2) we get,
\[z_0 = 1 \quad b_1 = \frac{1+1}{2} = \frac{1}{2} \]
\[z_1 = 1 \quad b_2 = \frac{2}{2} \]
\[z_2 = 2 \quad b_3 = \frac{3+1}{2} = \frac{3}{2} \]
\[z_3 = 2 \quad b_4 = \frac{4}{2} \]
\[z_4 = 3 \quad b_5 = \frac{5+1}{2} = \frac{5-1}{2} \]
\[z_5 = 3 \quad b_6 = \frac{6}{2} \]
\[z_6 = 4 \quad b_7 = 12 = \frac{7+1}{2} = \frac{7-1}{2} \]
\[z_7 = 4 \quad b_8 = 16 = \frac{8}{2} \]

From the values of \(b_i \) evaluated so far we can conclude that

\[b_{2n-1} = n(n-1) \quad \text{and} \quad b_{2n} = n^2 \]

and hence

\[b_{p-3} = \left(\frac{p-3}{2} \right)^2 \]

Now substituting \(z = p - 3, p - 2, p - 1, p \) in equation (4.3.2) we get,

\[z_{p-3} + b_{p-2} \cdot p = x_{p-3} + (p - 1) \sum_{s=1}^{x_{p-3}} x_{2s-1} + b_{p-3} \]

\[= (p - 2) + (p - 1)(x_1 + x_2 + \ldots + x_{p-4}) + b_{p-3} \]

\[= (p - 2) + 2(p - 1) \left(1 + 2 + \ldots + \frac{p-3}{2} \right) + \left(\frac{p-3}{2} \right)^2 \]

\[= \left(\frac{p^2 - 4p + 3}{4} \right) p + \left(\frac{p-1}{2} \right) \]

\[: z_{p-3} = \frac{p-1}{2} \quad \text{and} \quad b_{p-2} = \frac{p^2 - 4p + 3}{4} = \left(\frac{p-1}{2} \right) \left(\frac{p-1}{2} - 1 \right) \]
\[z_{p-2} + b_{p-1} = x_{p-2} + (p - 1) \sum_{s=0}^{\frac{p-3}{2}} x_{2s} + b_{p-2} \]

\[= (p - 1) + (p - 1)(x_0 + x_2 + \ldots + x_{p-3}) + b_{p-2} \]

\[= (p - 1) + (p - 1)(1 + 3 + \ldots + p - 2) + \left(\frac{p^2 - 4p + 3}{4} \right) \]

\[= \left(\frac{p^2 - 2p + 1}{4} \right) p + \left(\frac{p - 1}{2} \right) \]

\[\therefore z_{p-2} = \frac{p - 1}{2} \quad \text{and} \quad b_{p-1} = \frac{p^2 - 2p + 1}{4} = \left(\frac{p - 1}{2} \right)^2 \]

\[z_{p-1} + b_p = x_{p-1} + (p - 1) \sum_{s=1}^{\frac{p-1}{2}} x_{2s-1} + b_{p-1} \]

\[= 0 + (p - 1)(x_1 + x_3 + \ldots + x_{p-2}) + b_{p-1} \]

\[= (p - 1)(2 + 4 + \ldots + (p - 1)) + \left(\frac{p - 1}{2} \right)^2 \]

\[= \left(\frac{p^2 - 5}{4} \right) p + \left(\frac{p + 1}{2} \right) \]

\[\therefore z_{p-1} = \frac{p + 1}{2} \quad \text{and} \quad b_p = \frac{p^2 - 5}{4} \]

By the substitution \(i = p, p + 1, \ldots, p + 6 \) in equation (4.3.2) it can be deduce that
\[z_p = \frac{p + 1}{2} \quad b_{p+1} = \left(\frac{p - 1}{2}\right)^2 + 0 = \left(\frac{p - 1}{2}\right)^2 + \left(\frac{1 + 1}{2}\right)^2 - 1 \]

\[z_{p+1} = \frac{p + 3}{2} \quad b_{p+2} = \frac{p^2 + 3}{4} = \frac{p^2 - 5}{4} + 2 \]

\[z_{p+2} = \frac{p + 3}{2} \quad b_{p+3} = \frac{p^2 - 2p + 13}{4} = \left(\frac{p - 1}{2}\right)^2 + \left(\frac{3 + 1}{2}\right)^2 - 1 \]

\[z_{p+3} = \frac{p + 5}{2} \quad b_{p+4} = \frac{p^2 + 19}{4} = \frac{p^2 - 5}{4} + 6 \]

\[z_{p+4} = \frac{p + 5}{2} \quad b_{p+5} = \frac{p^2 - 2p + 33}{4} = \left(\frac{p - 1}{2}\right)^2 + \left(\frac{5 + 1}{2}\right)^2 - 1 \]

\[z_{p+5} = \frac{p + 7}{2} \quad b_{p+6} = \frac{p^2 + 43}{4} = \frac{p^2 - 5}{4} + 12 \]

\[z_{p+6} = \frac{p + 7}{2} \quad b_{p+7} = \frac{p^2 - 2p + 61}{4} = \left(\frac{p - 1}{2}\right)^2 + \left(\frac{7 + 1}{2}\right)^2 - 1 \]

The initial values of \(b_i^e \) in this section motives to take

\[b_{p+2n-1} = \left(\frac{p - 1}{2}\right)^2 + n^2 - 1 \quad \text{and} \quad b_{p+2n} = \left(\frac{p^2 - 5}{4}\right) + n(n + 1) \]

and hence

\[b_{2p-3} = \left(\frac{p^2 - 5}{4}\right) + \left(\frac{p - 3}{2}\right) \left(\frac{p - 3}{2} + 1\right) = \frac{p^2 - 2p - 1}{2} \]

Now substituting \(i = 2p - 3, 2p - 2, 2p - 1, 2p \) in equation (4.3.2) we obtain,
\[z_{2p-3} + b_{2p-3, p} = x_{2p-3} + (p - 1) \sum_{s=0}^{p-2} x_{2s} + b_{2p-3} \]

\[= (p - 1) + (p - 1)(x_0 + x_2 + \ldots + x_{2p-4}) + b_{2p-3} \]

\[= (p - 1) + (p - 1)[(1 + 3 + \ldots + p - 2) + (3 + 5 + \ldots + p - 2)] + b_{2p-3} \]

\[= 2(p - 1)(1 + 3 + \ldots + p - 2) + \frac{p^2 - 2p - 1}{2} \]

\[= \left(\frac{p^2 - 2p - 1}{2} \right) p + (p - 1) \]

\[
\therefore \, z_{2p-3} = p - 1 \text{ and } b_{2p-3} = \frac{p^2 - 2p - 1}{2} = \left(\frac{p - 1}{2} \right)^2 + \left(\frac{p - 1}{2} \right)^2 - 1
\]

\[z_{2p-2} + b_{2p-2, p} = x_{2p-2} + (p - 1) \sum_{s=1}^{p-1} x_{2s-1} + b_{2p-2} \]

\[= 0 + (p - 1)(x_1 + x_3 + \ldots + x_{2p-3}) + b_{2p-2} \]

\[= (p - 1)(x_1 + x_3 + \ldots + x_{p-2} + x_{p+1} + x_{p+3} + \ldots + x_{2p-3}) + b_{2p-2} \]

\[= (p - 1)[(2 + 4 + \ldots + p - 1) + (2 + 4 + \ldots + p - 1)] + b_{2p-2} \]

\[= 4(p - 1) \left(1 + 2 + \ldots + \frac{p - 1}{2} \right) + \frac{p^2 - 2p - 1}{2} \]

\[= \left(\frac{p^2 - 3}{2} \right) p + 0 \]

\[
\therefore \, z_{2p-2} = 0 \text{ and } b_{2p-2} = \frac{p^2 - 3}{2}
\]
\[z_{2p-1} + b_{2p} = x_{2p-1} + (p - 1) \sum_{s=0}^{p-1} x_{2s} + b_{2p-1} \]

\[= 2 + (p - 1)(x_0 + x_2 + \ldots + x_{2p-2}) + b_{2p-1} \]

\[= 2 + (p - 1)(x_0 + x_2 + \ldots + x_{p-3} + x_{p-1} + x_{p+1} + \ldots + x_{2p-2}) + b_{2p-1} \]

\[= 2 + (p - 1)[(1 + 3 + \ldots + p - 2) + (3 + 5 + \ldots + p - 2)] + b_{2p-1} \]

\[= 2 + (p - 1)[(p - 1)^2 - 1] + \frac{p^2 - 3}{2} \]

\[= \left(\frac{p^2 - 2p + 1}{2} \right) p + 1 \]

\[\therefore z_{2p-1} = 1 \quad \text{and} \quad b_{2p} = \frac{p^2 - 2p + 1}{2} \]

\[z_{2p} + b_{2p+1} = x_{2p} + (p - 1) \sum_{s=1}^{p} x_{2s-1} + b_{2p} \]

\[= 3 + (p - 1)(x_1 + x_3 + \ldots + x_{2p-1}) + b_{2p} \]

\[= 3 + (p - 1)(x_1 + x_3 + \ldots + x_{p-2} + x_p + x_{p+2} + \ldots + x_{2p-1}) + b_{2p} \]

\[= 3 + (p - 1)[(2 + 4 + \ldots + p - 1) + (2 + 4 + \ldots + p - 1) + 2] + b_{2p} \]

\[= (2p + 1) + 4(p - 1) \left(1 + 2 + \ldots + \frac{p - 1}{2} \right) + \frac{p^2 - 2p + 1}{2} \]

\[= \left(\frac{p^2 + 1}{2} \right) p + 2 \]

\[\therefore z_{2p} = 2 \quad \text{and} \quad b_{2p+1} = \frac{p^2 + 1}{2} \]

Continuing up to \(i = 2p + 6 \) we obtain.
The initial values of b_i in this section motives to take

\[b_{2p+2n-1} = \left(\frac{p^2 - 3}{2} \right) + n(n + 1) \quad \text{and} \quad b_{2p+2n} = \frac{(p - 1)^2}{2} + n(n + 2) \]

and hence

\[b_{3p-5} = \frac{(p - 1)^2}{2} + \left(\frac{p - 5}{2} \right) \left(\frac{p - 5}{2} + 2 \right) \]

Now substituting $i = 3p - 5, 3p - 4, 3p - 3$ in equation (4.3.2) we obtain
\[z_{3p-5} + b_{3p-4} \cdot p = x_{3p-5} + (p - 1) \sum_{s=1}^{3p-5} x_{2s-1} + b_{3p-5} \]

\[= (p - 2) + (p - 1)(x_1 + x_3 + \ldots + x_{3p-6}) + b_{3p-5} \]

\[= (p - 2) + (p - 1) [(x_1 + x_3 \ldots + x_{p-2})] + \]

\[(p - 1) [(x_p + x_{p+2} + \ldots + x_{2p-3}) + (x_{2p-1} + x_{2p+1} + \ldots + x_{3p-6})] + b_{3p-5} \]

\[= (p - 2) + (p - 1)[(2 + 4 + \ldots + p - 1) + (2 + 4 + \ldots + p - 1)] + \]

\[(p - 1)(2 + 4 + \ldots + p - 3) + b_{3p-5} \]

\[= (p - 2) + (p - 1)\left(6(1 + 2 + \ldots + \frac{p - 1}{2}) - (2p - 3)\right) + \]

\[\frac{(p - 1)^2}{2} + \left(\frac{p - 5}{2}\right)\left(\frac{p - 5}{2} + 2\right) \]

\[= \left(\frac{3p^2 - 4p - 3}{4}\right) + \frac{p - 1}{2} \]

\[\therefore z_{3p-5} = \frac{p - 1}{2} \text{ and } b_{3p-4} = \frac{3p^2 - 4p - 3}{4} \]

68
$$z_{3p-4} + b_{3p-3}p = x_{3p-4} + (p - 1) \sum_{s=0}^{3p-5 \over 2} x_{2s} + b_{3p-4}$$

$$= (p - 1) + (p - 1)(x_0 + x_2 + \ldots + x_{3p-5}) + b_{3p-4}$$

$$= (p - 1) + (p - 1)[(x_0 + x_2 + \ldots + x_{p-3})] +$$

$$(p - 1)[(x_{p+1} + x_{p+3} + \ldots + x_{2p-4}) + (x_{2p} + x_{2p+2} + \ldots + x_{3p-5})] + b_{3p-4}$$

$$= (p - 1) + (p - 1)[(1 + 3 + \ldots + p - 2) + (3 + 5 + \ldots + p - 2)] +$$

$$(p - 1)(3 + 5 + \ldots + p - 2) + b_{3p-4}$$

$$= (p - 1) \left[\frac{(p - 1)^2}{4} - 1 \right] + \frac{3p^2 - 4p - 3}{4}$$

$$= \left(\frac{3p^2 - 6p - 1}{4} \right) p + \left(\frac{p - 1}{2} \right)$$

$$\therefore z_{3p-4} = \frac{p - 1}{2} \quad \text{and} \quad b_{3p-3} = \frac{3p^2 - 6p - 1}{4}$$

$$z_{3p-3} + b_{3p-2}p = x_{3p-3} + (p - 1) \sum_{s=1}^{3p-2 \over 2} x_{2s-1} + b_{3p-3}$$

$$= 0 + (p - 1)(x_1 + x_3 + \ldots + x_{3p-4}) + b_{3p-3}$$

$$= (p - 1)[(x_1 + x_3 + \ldots + x_{p-2})] +$$

$$(p - 1)[(x_p + x_{p+2} + \ldots + x_{2p-3}) + (x_{2p-1} + x_{2p+1} + \ldots + x_{3p-4})] + b_{3p-3}$$

$$= (p - 1)[(2 + 4 + \ldots + p - 1) + (2 + 4 + \ldots + p - 1)] +$$

$$(p - 1)(2 + 4 + \ldots + p - 1) + \frac{3p^2 - 6p - 1}{4}$$

$$= \left(\frac{3p^2 - 11}{4} \right) p + \left(\frac{p + 1}{2} \right)$$

$$\therefore z_{3p-3} = \frac{p + 1}{2} \quad \text{and} \quad b_{3p-2} = \frac{3p^2 - 11}{4}$$

By the substitution $i = 3p - 2, 3p - 1, \ldots, 3p + 3$ in equation (4.3.2) it can be seen that
\[z_{3p-2} = \frac{p + 1}{2}, \quad b_{3p-1} = \frac{3p^2 - 6p - 1}{4}\]
\[z_{3p-1} = \frac{p + 3}{2}, \quad b_{3p} = \frac{3p^2 - 3}{4}\]
\[z_{3p} = \frac{p + 3}{2}, \quad b_{3p+1} = \frac{3p^2 - 6p + 11}{4}\]
\[z_{3p+1} = \frac{p + 5}{2}, \quad b_{3p+2} = \frac{3p^2 + 13}{4}\]
\[z_{3p+2} = \frac{p + 5}{2}, \quad b_{3p+3} = \frac{3p^2 - 6p + 31}{4}\]
\[z_{3p+3} = \frac{p + 7}{2}, \quad b_{3p+4} = \frac{3p^2 + 37}{4}\]

With the help of these initial values of \(b_i^p\) in this section we can conclude that

\[b_{3p+2n-1} = \frac{3p^2 - 6p - 1}{4} + n(n + 2) \quad \text{and} \quad b_{3p+2n} = \frac{3p^2 - 11}{4} + (n + 1)(n + 2)\]

Finally by the substitution \(i = 4p - 6, 4p - 5, 4p - 4\) in equation (4.3.2) we get

\[z_{4p-6} + b_{4p-5}p = x_{4p-6} + (p - 1) \sum_{s=1}^{\frac{3p-3}{2}} x_{2s-1} + b_{4p-6}\]

\[= (p - 2) + (p - 1)(x_1 + x_3 + \ldots + x_{4p-7}) + b_{4p-6}\]

\[= (p - 2) + (p - 1) [(x_1 + x_3 + \ldots + x_{p-2}) + (x_p + x_{p+2} + \ldots + x_{2p-3})] +\]

\[(p - 1) [(x_{2p-1} + x_{2p+1} + \ldots + x_{3p-4}) + (x_{3p-2} + x_{3p} + \ldots + x_{4p-7})] + b_{4p-6}\]

\[= (p - 2) + (p - 1)[4(2 + 4 + \ldots + p - 1) - (p - 1)] +\]

\[\frac{3p^2 - 6p - 1}{4} + \left(\frac{p - 5}{2}\right)\left(\frac{p - 5}{2} + 2\right)\]

\[= (p^2 - p - 2)p + (p - 1)\]

\[
\therefore z_{4p-6} = p - 1 \quad \text{and} \quad b_{4p-5} = p^2 - p - 2
\]
\[z_{4p-5} + b_{4p-4} \cdot p = x_{4p-5} + (p - 1) \sum_{s=0}^{2p-3} x_{2s} + b_{4p-5} \]

\[= (p - 1) + (p - 1)(x_0 + x_2 + \ldots + x_{4p-6}) + b_{4p-5} \]

\[= (p - 1) + (p - 1) [(x_0 + x_2 + \ldots + x_{p-3}) + (x_{p+1} + x_{p+3} + \ldots + x_{2p-4})] + \]

\[(p - 1) [(x_{2p} + x_{2p+2} + \ldots + x_{3p-5}) + (x_{3p-1} + x_{3p+1} + \ldots + x_{4p-6})] + b_{4p-5} \]

\[= (p - 1) + (p - 1) [(1 + 3 + \ldots + p - 2) + (3 + 5 + \ldots + p - 2)] + \]

\[(p - 1) [(3 + 5 + \ldots + p - 2) + (3 + 5 + \ldots + p - 2)] + (p^2 - p - 2) \]

\[= (p^2 - 2p - 1)p + (p - 1) \]

\[\therefore z_{4p-5} = p - 1 \text{ and } b_{4p-4} = p^2 - 2p - 1 \]

\[z_{4p-4} + b_{4p-3} \cdot p = x_{4p-4} + (p - 1) \sum_{s=1}^{2p-2} x_{2s-1} + b_{4p-4} \]

\[= 0 + (p - 1)(x_1 + x_3 + \ldots + x_{4p-7}) + b_{4p-6} \]

\[= (p - 2) + (p - 1) [(x_1 + x_3 + x_{p-2}) + (x_p + x_{p+2} + \ldots + x_{2p-3})] + \]

\[(p - 1) [(x_{2p-1} + x_{2p+1} + \ldots + x_{3p-4}) + (x_{3p-2} + x_{3p} + \ldots + x_{4p-5})] + b_{4p-4} \]

\[= (p - 1)[4(2 + 4 + \ldots + p - 1) + (p^2 - 2p - 1)] \]

\[= (p^2 - 3)p + 0 \]

\[\therefore z_{4p-4} = 0 \text{ and } b_{4p-4} = p^2 - 3 \]

This completes the proof.

Theorem 4.3.5. (a) For \(p \geq 7, \) if \(3\alpha = p + 1, \) then

\[I_p(3) = \{\alpha, R\}, \quad \text{where} \quad R = (p - \alpha, \alpha - 1) \]

\[\text{and } I_p(\alpha) = \{3, R\} \quad \text{where} \quad R = (p - 3, 2) \]

Moreover,

\[[3x \equiv e_0 \pmod{p}] = \{0, R'\} \quad \text{where} \quad R' = (1, 2) \]

\[\text{and } [\alpha x \equiv e_0 \pmod{p}] = \{0, R'\} \quad \text{where} \quad R' = (1, \alpha - 1) \]
(b) In case $3\alpha = 2p + 1$,

$$I_p(3) = \{\alpha, R\} \text{ where } R = (\alpha - 1)$$

and $[3x \equiv e_0 \pmod{p}] = \{0, R'\}$ where $R' = (2)$

However in case of $I_p(\alpha)$ the recurred set is dependent on p and

$$I_p(\alpha) = \{3, p - 6, 11, p - 24, 47, p - 96, 191, p - 384, 767, p - 1536, \ldots\}$$

Proof: (a) The relation $3x \equiv e_0 \pmod{p}$ gives,

$$3x_0 \equiv 1 \pmod{p} \Rightarrow x_0 = \alpha, \quad b_1 = 1 \quad [\because 3\alpha = p + 1]$$

$$3x_1 + 1 \equiv 0 \pmod{p} \Rightarrow x_1 = p - \alpha, \quad b_2 = 2$$

$$3x_2 + 2 \equiv 0 \pmod{p} \Rightarrow x_2 = \alpha - 1, \quad b_3 = 1 \quad \text{and so on.}$$

On the other hand, the relation $\alpha x \equiv e_0 \pmod{p}$ gives,

$$\alpha x_0 \equiv 1 \pmod{p} \Rightarrow x_0 = 3, \quad b_1 = 1$$

$$\alpha x_1 + 1 \equiv 0 \pmod{p} \Rightarrow x_1 = p - 3, \quad b_2 = \alpha - 1$$

$$\alpha x_2 + \alpha - 1 \equiv 0 \pmod{p} \Rightarrow x_2 = 2, \quad b_3 = 1 \quad \text{and so on.}$$

(b) As $3\alpha = 2p + 1$, solving the Diophantine equations given by

$3x \equiv e_0 \pmod{p}$ it is easy to deduce the first part of the result.

The relation $\alpha x \equiv e_0 \pmod{p}$ gives,

$$\alpha x_0 \equiv 1 \pmod{p} \Rightarrow x_0 = 3, \quad b_1 = 2 \quad [\because 3\alpha = 2p + 1]$$

$$\alpha x_1 + 2 \equiv 0 \pmod{p} \Rightarrow x_1 = p - 6, \quad b_2 = \frac{2p - 11}{3}$$

$$\alpha x_2 + \frac{2p - 11}{3} \equiv 0 \pmod{p} \Rightarrow x_2 = 11, \quad b_3 = 8 \quad \text{and so on.}$$

This completes the proof.

Remark 4.3.6. Taking $p = 7$ we obtain,

$$I_7(5) = \{3, 1, 11, -17, 47, -89, 191, \ldots\}$$
Now \(11 \equiv 4 \pmod{7}; -17 + 1 \equiv 5 \pmod{7}; 47 - 3 \equiv 2 \pmod{7}; -89 + 6 \equiv 1 \pmod{7}; 191 - 12 \equiv 4 \pmod{7} \) etc.

\[\therefore I_7(5) = \{3, R\} \quad \text{where} \quad R = (1, 4, 5, 2). \]

Again taking \(p = 19 \), it can be seen that,

\[I_{19}(13) = \{3, R\} \quad \text{where} \quad R = (13, 11, 14, 8, 1, 16, 5, 7, 4, 10, 17, 2) \]

This shows that the order of the recurred set is dependent of \(p \).

From Theorem 4.3.7 to Theorem 4.3.12 we have shown that \(I_p(a_k) \) is a recurring \(p \)-adic integer with a \(p \)-independent recurred set whenever

\[a_k = \sum_{i=0}^{k} \alpha e_i; \alpha = 1, 2, 3, 4. \]

Theorem 4.3.7. For \(a_k = \sum_{i=0}^{k} e_i \in \Omega_p, I_p(a_k) \) is a recurring \(p \)-adic integer of degree 1 and of order \((k + 1) \) i.e. \(I_p(a_k) = \{1, R_k\} \) where \(R_k = ((p - 1)^k, 0) \).

Furthermore the carry-out sequence \([a_kx \equiv e_0 \pmod{p}] \) is also a recurring one of degree \((k + 1) \) and of order 1 that is \([a_kx \equiv e_0 \pmod{p}] = \{0, 0, 1, 2, \ldots, k-1, R_k\} \) where \(R_k' = (k) \)

Proof: Taking \(k = 1 \) we obtain \(a_1 = (e_0 + e_1) \). Solving the equations given by the relation \(a_1x \equiv e_0 \pmod{p} \) we get,

\[
\begin{align*}
x_0 & \equiv 1 \pmod{p} \Rightarrow x_0 = 1, \quad b_1 = 0 \\
x_1 + 1 & \equiv 0 \pmod{p} \Rightarrow x_1 = p - 1, \quad b_2 = 1 \\
x_2 + p & \equiv 0 \pmod{p} \Rightarrow x_2 = 0, \quad b_3 = 1 \\
x_3 + 1 & \equiv 0 \pmod{p} \Rightarrow x_3 = p - 1, \quad b_4 = 1
\end{align*}
\]
and so on.

\[I_p(a_1) = \{1, p - 1, 0, \ldots\} = \{1, R_1\} \quad \text{where} \quad R_1 = (p - 1, 0) \]

Also

\[[a_1 x \equiv e_0 \pmod{p}] = \{0, 0, R'_1\} \quad \text{where} \quad R'_1 = (1) \]

Taking \(k = 2 \) we obtain \(a_2 = (e_0 + e_1 + e_2) \). Solving the equations given by the relation \(a_2 x \equiv e_0 \pmod{p} \) we get,

\[
\begin{align*}
 x_0 &\equiv 1 \pmod{p} \Rightarrow x_0 = 1, \quad b_1 = 0 \\
 x_1 + 1 &\equiv 0 \pmod{p} \Rightarrow x_1 = p - 1, \quad b_2 = 1 \\
 x_2 + p + 1 &\equiv 0 \pmod{p} \Rightarrow x_2 = p - 1, \quad b_3 = 2 \\
 x_3 + 2p &\equiv 0 \pmod{p} \Rightarrow x_3 = 0, \quad b_4 = 2 \\
 x_4 + p + 1 &\equiv 0 \pmod{p} \Rightarrow x_4 = p - 1, \quad b_5 = 2
\end{align*}
\]

and so on.

\[I_p(a_2) = \{1, p - 1, p - 1, 0, \ldots\} = \{1, R_2\} \quad \text{where} \quad R_2 = ((p - 1)^2, 0) \]

Also

\[[a_2 x \equiv e_0 \pmod{p}] = \{0, 0, 1, R'_2\} \quad \text{where} \quad R'_2 = (2) \]

Thus the result holds for \(k = 1 \) and \(k = 2 \).

Assuming the result for \(k \), with the note that the relations \(a_k x \equiv e_0 \pmod{p} \) and \(a_{k+1} x \equiv e_0 \pmod{p} \) produce the same set of equations up-to \((k + 1)^{th}\) step, we can conclude that the solutions of the equations obtained from \(a_{k+1} x \equiv e_0 \pmod{p} \) up-to \((k + 1)^{th}\) step are,

\[
x_0 = 1, x_1 = p - 1, x_2 = p - 1, \ldots, x_k = p - 1 \quad \text{with} \quad b_{k+1} = k.
\]

Hence the equation obtained from \(a_{k+1} x \equiv e_0 \pmod{p} \) in \((k + 2)^{th}\) step is,

\[
\begin{align*}
 x_{k+1} + k(p - 1) + 1 + k &\equiv 0 \pmod{p} \quad \Rightarrow x_{k+1} = p - 1, \quad b_{k+2} = k + 1 \\
 x_{k+2} + (k + 1)(p - 1) + (k + 1) &\equiv 0 \pmod{p} \quad \Rightarrow x_{k+2} = 0, \quad b_{k+3} = k + 1 \\
 x_{k+3} + k(p - 1) + (k + 1) &\equiv 0 \pmod{p} \quad \Rightarrow x_{k+3} = p - 1, \quad b_{k+4} = k + 1
\end{align*}
\]
and so on.

\[I_p(a_{k+1}) = \{1, R_{k+1}\} \quad \text{where} \quad R_{k+1} = ((p - 1)^{k+1}, 0) \]

and

\[[a_{k+1}x \equiv e_0 \pmod{p}] = \{0, 0, 1, 2, 3, \ldots, k, R'_{k+1}\} \quad \text{where} \quad R'_{k+1} = (k + 1) \]

The result follows by induction.

Corollary 4.3.8. (i) Letting \(k \to \infty \) we can obtain the second part of the Corollary 4.3.2(iii).

(ii) \(I_p(e_0 + 2e_1 + e_2) = \{1, R\} \) where \(|R| = p + 1 \) and \(R = (p - 2, 2, p - 4, 4, p - 6, 6, \ldots, 1, (p - 1)^2, 0) \)

Further more the carry-out sequence \([I_p(e_0 + e_1).I_p(e_0 + e_1)]\) is a functionally recurred one with degree 0 and of order \((p + 1)\).

Proof: we have,

\[I_p(e_0 + 2e_1 + e_2) = I_p(e_0 + e_1).I_p(e_0 + e_1) \]

Suppose that \(I_p(e_0 + e_1) = x, x^2 = z \quad \text{and} \quad [x^2] = b \). It follows from the Theorem 4.3.7 that

\[x_i = \begin{cases} 1 & \text{if } i = 0 \\ p - 1 & \text{if } i \text{ is odd} \\ 0 & \text{if } i \text{ is even} \end{cases} \]

Thus from Definition 3.2.3

\[z_i + b_{i+1.p} = \sum_{j+k=i} x_jx_k + b_i \quad \forall i = 0, 1, 2, \ldots \quad \text{with} \quad b_0 = 0. \]

Because of the form of \(x \) we can rewrite the above relation as

\[z_i + b_{i+1.p} = \begin{cases} 1 & \text{if } i = 0 \\ \frac{i}{2}(p - 1)^2 + b_i & \text{if } i \text{ is even} \\ 2(p - 1) + b_i & \text{if } i \text{ is odd} \end{cases} \quad (4.3.3) \]

Substituting \(i = 0, 1, \ldots, 8 \) in equation (4.3.3) it can be seen that
\[z_0 = 1 \quad ; \quad b_1 = 0 \]
\[z_1 = p - 2 \quad ; \quad b_2 = 1 \]
\[z_2 = 2 \quad ; \quad b_3 = p - 2 \]
\[z_3 = p - 4 \quad ; \quad b_4 = 2 \]
\[z_4 = 4 \quad ; \quad b_5 = 2(p - 2) \]
\[z_5 = p - 6 \quad ; \quad b_6 = 3 \]
\[z_6 = 6 \quad ; \quad b_7 = 3(p - 2) \]
\[z_7 = p - 8 \quad ; \quad b_8 = 4 \]
\[z_8 = 8 \quad ; \quad b_9 = 4(p - 2) \]

From the initial values of \(b_i \) we can have the following expression

\[
 b_i = \begin{cases}
 \frac{i}{2} & \text{if } i \text{ is even} \\
 \left(\frac{i-1}{2} \right) p - (i-1) & \text{if } i \text{ is odd}
\end{cases} \quad \text{if } 0 \leq i \leq p
\]

Hence

\[
 b_{p-2} = \left(\frac{p-3}{2} \right) p - (p-3) = \frac{p^2 - 5p + 6}{2}
\]

Substituting \(i = p - 2, p - 1, p, p + 1 \) in equation (4.3.3) we get

\[
 z_{p-2} + b_{p-1}p = 2(p-1) + \frac{p^2 - 5p + 6}{2}
\]

\[
 = \left(\frac{p-1}{2} \right) p + 1
\]

\[
 z_{p-1} + b_pp = \left(\frac{p-1}{2} \right) (p-1)^2 + \frac{p-1}{2}
\]

\[
 = \left(\frac{p^2 - 3p + 2}{2} \right) p + (p-1)
\]

\[
 z_p + b_{p+1}p = 2(p-1) + \frac{p^2 - 3p + 2}{2}
\]

\[
 = \left(\frac{p-1}{2} \right) p + (p-1)
\]

\[
 z_p = p - 1 \quad \text{and} \quad b_{p+1} = \frac{p-1}{2}
\]

\[
 \therefore z_p = p - 1 \quad \text{and} \quad b_{p+1} = \frac{p-1}{2}
\]

\[
 76
\]
\[z_{p+1} + b_{p+2}p = \left(\frac{p+1}{2} \right) (p-1)^2 + \frac{p-1}{2} \]
\[= \left(\frac{p-1}{2} \right) p^2 + 0 \]

\[\therefore z_{p+1} = 0 \quad \text{and} \quad b_{p+2} = \left(\frac{p-1}{2} \right) p \]

Similarly by the substitution \(i = p + 2, p + 3, \ldots, p + 7 \) in equation (4.3.3) we obtain

\[z_{p+2} = p - 2 \quad ; \quad b_{p+3} = \frac{p+1}{2} \]
\[z_{p+3} = 2 \quad ; \quad b_{p+4} = \frac{p^2 + p - 4}{2} \]
\[z_{p+4} = p - 4 \quad ; \quad b_{p+5} = \frac{p+3}{2} \]
\[z_{p+5} = 4 \quad ; \quad b_{p+6} = \frac{p^2 + 3p - 8}{2} \]
\[z_{p+6} = p - 6 \quad ; \quad b_{p+7} = \frac{p+5}{2} \]
\[z_{p+7} = 6 \quad ; \quad b_{p+8} = \frac{p^2 + 5p - 12}{2} \]

From the above initial values of \(b_i^p \) in this section we can write

\[b_i = \begin{cases}
 \frac{z - 2}{2} & \text{if} \ i \ \text{is even} \\
 \left(\frac{i - 1}{2} \right) p - (i - 2) & \text{if} \ i \ \text{is odd}
\end{cases} \quad \text{if} \ (p + 1) \leq z \leq (2p + 1) \]

Hence

\[b_{2p-1} = \left(\frac{2p - 2}{2} \right) p - (2p - 3) = p^2 - 3p + 3 \]

By the substitution of \(i = 2p - 1, 2p, 2p + 1, 2p + 2 \) in equation (4.3.3) we get

\[z_{2p-1} + b_{2p}p = 2(p - 1) + p^2 - 3p + 3 \]
\[= (p - 1)p + 1 \]

\[\therefore z_{2p-1} = 1 \quad \text{and} \quad b_{2p} = p - 1 \]
\[z_{2p} + b_{2p+1} = p(p-1)^2 + (p-1) \]
\[= (p-1)^2 + (p-1) \]
\[\therefore z_{2p} = p - 1 \quad \text{and} \quad b_{2p+1} = (p-1)^2 \]

\[z_{2p+1} + b_{2p+2} = 2(p-1) + (p-1)^2 \]
\[= (p-1)p + (p-1) \]
\[\therefore z_{2p+1} = p - 1 \quad \text{and} \quad b_{2p+2} = p - 1 \]

\[z_{2p+2} + b_{2p+3} = (p+1)(p-1)^2 + (p-1) \]
\[= (p-1)p^2 + 0 \]
\[\therefore z_{2p+2} = 0 \quad \text{and} \quad b_{2p+3} = p(p-1) \]

Similarly by the substitution of \(i = 2p + 3, 2p + 4, \ldots, 2p + 6 \) it can be seen that

\[z_{2p+3} = p - 2 \quad ; \quad b_{2p+4} = p \]

\[z_{2p+4} = 2 \quad ; \quad b_{2p+5} = p^2 - 2 \]

\[z_{2p+5} = p - 4 \quad ; \quad b_{2p+6} = p + 1 \]

\[z_{2p+6} = 4 \quad ; \quad b_{2p+7} = p^2 + p - 4 \]

The initial values of \(b_i^* \) in this section suggested that

\[b_i = \begin{cases}
\frac{i - 4}{2} & \text{if } i \text{ is even} \\
\left(\frac{i - 1}{2}\right)p - (i - 3) & \text{if } i \text{ is odd}
\end{cases} \quad 2(p+1) \leq i \leq (3p+2) \]

Thus the values of \(b_i^* \) for the entire sections are given by

\[b_i = \begin{cases}
\frac{i - 2n}{2} & \text{if } i \text{ is even} \\
\left(\frac{i - 1}{2}\right)p - (i - n - 1) & \text{if } i \text{ is odd}
\end{cases} \quad n(p+1) \leq i \leq ((n+1)p + n) \]

Hence \([x^2] = b = \{R_0, R_1, \ldots\} \text{ where}\)

\[R_0 = \{0, 0, 1, p - 2, \ldots, \frac{p-1}{2}, \frac{p-1}{2} (p-2)\} = \{b_i : 0 \leq i \leq p\} \]

78
For $k \geq 1$ the function $f_k : R_0 \mapsto R_k$ defined by

$$f_k(b_i) = \begin{cases}
\frac{k(p + 1) + (i - 2k)}{2} & \text{if } i \text{ is even} \\
\left(\frac{k(p + 1) + (i - 1)}{2}\right)(p - (kp + i - 1)) & \text{if } i \text{ is odd}
\end{cases}$$

proves that $[x^2]$ is a functionally recurred one.

Theorem 4.3.9. For $a_k = \sum_{i=0}^{k} 2e_i \in \Omega_p$, $I_p(a_k)$ is a recurring one of degree 1 and of order $(k + 1)$, that is,

$$I_p(a_k) = \left\{ \frac{p + 1}{2}, R_k \right\} \text{ where } R_k = \left(\frac{p - 1}{2}, \frac{p - 1}{2}\right)$$

Furthermore $[a_kx \equiv e_0 \pmod{p}]$ is also a recurring one of degree $(k + 1)$ and of order 1, that is,

$$[a_kx \equiv e_0 \pmod{p}] = \{0, 1, 3, 5, \ldots, 2k - 1, R'_k\} \text{ where } R'_k = (2k + 1).$$

Proof: For $k = 0$, $a_0 = 2e_0$ and hence for $x = \{x_i\} \in \Omega_p$ we have,

$$a_0x = \{2x_0, 2x_1, 2x_2, \ldots\}$$

Thus the relation $a_0x \equiv e_0 \pmod{p}$ gives,

$$2x_0 \equiv 1 \pmod{p} \Rightarrow x_0 = \frac{p + 1}{2}, \quad b_1 = 1$$

$$2x_1 + 1 \equiv 0 \pmod{p} \Rightarrow x_1 = \frac{p - 1}{2}, \quad b_2 = 1$$

$$2x_2 + 1 \equiv 0 \pmod{p} \Rightarrow x_2 = \frac{p - 1}{2}, \quad b_3 = 1$$

and so on.

$$\therefore I_p(a_0) = \left\{ \frac{p + 1}{2}, R_0 \right\} \text{ where } R_0 = \left(\frac{p - 1}{2}\right)$$

Also,

$$[a_0x \equiv e_0 \pmod{p}] = \{0, R'_0\} \text{ where } R'_0 = (1)$$

79
For \(k = 1 \), \(a_1 = 2e_0 + 2e_1 \) and hence for \(x = \{x_i\} \in \Omega_p \) we have,

\[
a_0 x = \{2x_0, 2x_1 + 2x_0, 2x_2 + 2x_1, \ldots\}
\]

Thus the relation \(a_1 x \equiv e_0 \) (mod \(p \)) gives,

\[
2x_0 \equiv 1 \pmod{p} \Rightarrow x_0 = \frac{p+1}{2} \quad b_1 = 1
\]

\[
2x_1 + p + 2 \equiv 0 \pmod{p} \Rightarrow x_1 = p - 1 \quad b_2 = 3
\]

\[
2x_2 + 2p + 1 \equiv 0 \pmod{p} \Rightarrow x_2 = \frac{p-1}{2} \quad b_3 = 3
\]

and so on.

\[
I_p(a_1) = \left\{ \frac{p+1}{2}, R_1 \right\} \quad \text{where} \quad R_1 = \left(p-1, \frac{p-1}{2} \right)
\]

Also,

\[
[a_1 x \equiv e_0 \pmod{p}] = \left\{ 0, 1, R'_1 \right\} \quad \text{where} \quad R'_1 = (3)
\]

For \(k = 2 \), \(a_2 = 2e_0 + 2e_1 + 2e_2 \) and hence for \(x = \{x_i\} \in \Omega_p \) we have,

\[
a_2 x = \{2x_0, 2x_1 + 2x_0, 2x_2 + 2x_1 + 2x_0, \ldots\}
\]

Thus the relation \(a_2 x \equiv e_0 \) (mod \(p \)) gives,

\[
2x_0 \equiv 1 \pmod{p} \Rightarrow x_0 = \frac{p+1}{2} \quad b_1 = 1
\]

\[
2x_1 + p + 2 \equiv 0 \pmod{p} \Rightarrow x_1 = p - 1 \quad b_2 = 3
\]

\[
2x_2 + 3p + 2 \equiv 0 \pmod{p} \Rightarrow x_2 = p - 1 \quad b_3 = 5
\]

\[
2x_3 + 4p + 1 \equiv 0 \pmod{p} \Rightarrow x_3 = \frac{p-1}{2} \quad b_4 = 5
\]

and so on.

\[
I_p(a_2) = \left\{ \frac{p+1}{2}, R_2 \right\} \quad \text{where} \quad R_2 = \left((p-1)^2, \frac{p-1}{2} \right)
\]

Also,

\[
[a_2 x \equiv e_0 \pmod{p}] = \left\{ 0, 1, 3, R'_2 \right\} \quad \text{where} \quad R'_2 = (5)
\]

Thus the result holds for \(k = 0, 1, 2 \).

Assuming the result for \(k \), with the note that the relations \(a_k x \equiv e_0 \pmod{p} \) and \(a_{k+1} x \equiv e_0 \pmod{p} \),
(mod p) produce the same set of equations up-to (k + 1)th step, we can conclude that the solutions of the equations obtain from \(a_{k+1}x \equiv e_0 \, (\text{mod } p)\) up-to (k + 1)th step are,

\[
x_0 = \frac{p + 1}{2}, x_1 = p - 1, x_2 = p - 1, \ldots, x_k = p - 1 \quad \text{and} \quad b_{k+1} = 2k + 1
\]

Hence the equation obtained from \(a_{k+1}x \equiv e_0 \, (\text{mod } p)\) in (k + 2)th step is,

\[
2x_{k+1} + 2\left(\frac{p + 1}{2}\right) + 2k(p - 1) + (2k + 1) \equiv 0 \quad (\text{mod } p) \Rightarrow x_{k+1} = p - 1, \quad b_{k+2} = 2k + 3
\]

\[
\therefore \quad 2x_{k+2} + 2(k + 1)(p - 1) + (2k + 3) \equiv 0 \quad (\text{mod } p) \Rightarrow x_{k+2} = \frac{p - 1}{2}, \quad b_{k+3} = 2k + 3
\]

\[
\therefore \quad 2x_{k+3} + 2k(p - 1) + 2\left(\frac{p - 1}{2}\right) + (2k + 3) \equiv 0 \quad (\text{mod } p) \Rightarrow x_{k+3} = p - 1, \quad b_{k+4} = 2k + 3
\]

and so on.

\[
\therefore \quad I_p(a_{k+1}) = \left\{\frac{p + 1}{2}, R_{k+1}\right\} \quad \text{where} \quad R_{k+1} = \left((p - 1)^{k+1}, \frac{p - 1}{2}\right)
\]

and \([a_{k+1}x \equiv e_0 \, (\text{mod } p)] = \{0, 1, 3, 5, \ldots, 2k + 1, R'_{k+1}\}\) where \(R'_{k+1} = (2k + 3)\)

The result follows by induction.

Corollary 4.3.10. (i) Letting \(k \to \infty\) we obtain,

\[
I_p(2e) = \left(\frac{p + 1}{2}\right)e_0 + (p - 1)\sum_{i \geq 1} e_i
\]

(ii) \(\frac{p - 1}{2} + I_p(2e) = 0\) and hence

\[
I_p\left(\frac{p - 1}{2}\right) = -2e = (p - 2)e_0 + (p - 3)\sum_{i \geq 1} e_i = \{p - 2, R\} \quad \text{where} \quad R = (p - 3).
\]

(iii) \(I_p(2) + I_p\left(\frac{p - 1}{2}\right) = \left\{\frac{p - 3}{2}, R\right\} \quad \text{where} \quad R = \left(\frac{p - 5}{2}\right).\) In particular, \(2I_0(2) = e_0\)

(iv) \(I_p\left(\frac{p + 1}{2}\right) - I_p\left(\frac{p - 1}{2}\right)\) is a recurring \(p\)-adic integer of degree zero with the recurred set \(R = (4, 0)\).

(v) \(I_p\left(\frac{p - 1}{2}\right) - I_p\left(\frac{p + 1}{2}\right) = \{p - 4, R\} \quad \text{where} \quad R = (p - 1, p - 5).\)
(vi) \(I_p \left(\frac{p+1}{2} \right) + I_p \left(\frac{p-1}{2} \right) \) is not invertible in \(\Omega_p \).

(vii) \(I_p \left(\frac{p^2-1}{4} \right) = \{p-4, R\} \) where \(R = (p-1, p-5) \).

Moreover if \(\left[I_p \left(\frac{p+1}{2} \right) \right] \left[I_p \left(\frac{p-1}{2} \right) \right] = b = \{b_i\} \) then

\[
b_i = \begin{cases}
0 & \text{if } i = 0 \\
\left(\frac{i-1}{2} \right) p - \left(\frac{3i-5}{2} \right) & \text{if } i \text{ is odd} \\
\frac{i}{2} (p-3) & \text{if } i \text{ is even}
\end{cases}
\]

Also \(\left[I_p \left(\frac{p+1}{2} \right) \right] \left[I_p \left(\frac{p-1}{2} \right) \right] = b = \{b_i\} \) is functionally recurred one of degree 2 and of order 2.

Proof: Clearly \(I_p \left(\frac{p^2-1}{4} \right) = I_p \left(\frac{p+1}{2} \right) I_p \left(\frac{p-1}{2} \right) \).

Suppose that \(x = I_p \left(\frac{p+1}{2} \right) = \{2, R\} \) where \(R = (p-2, 1) \)

and \(y = I_p \left(\frac{p-1}{2} \right) = \{p-2, R\} \) where \(R = (p-3) \)

It follows that

\[
x_i = \begin{cases}
2 & \text{if } i = 0 \\
p - 2 & \text{if } i \text{ is odd} \\
1 & \text{if } i \text{ is even}
\end{cases}
\]

and

\[
y_0 = p - 2, y_i = p - 3 \forall i \geq 1
\]

If we take \(xy = z \) and \([xy] = b\) then

\[
z_i + b_{i+1}p = \sum_{j+k=i} x_j y_k + b_i \quad \forall i = 0, 1, 2, \ldots \tag{4.3.4}
\]

i.e. \(z_i + b_{i+1}p = (p-3) \sum_{j=0}^{i-1} x_j + (p-2)x_i + b_i \quad \forall i = 0, 1, 2, \ldots \tag{4.3.5} \)

In equation (4.3.5) by the substitution \(i = 0 \) we obtain

\[
z_0 + b_1p = 2(p-2) + 0 = 1.p + (p-4)
\]
It follows that $z_0 = p - 4$ and $b_1 = 1$.

Similarly in equation (4.3.5) by the substitution $i = 1, 2, 3, 4, 5, 6$, it can be easily seen that

\[
\begin{align*}
 z_1 &= p - 1 \quad ; \quad b_2 = p - 3 \\
 z_2 &= p - 5 \quad ; \quad b_3 = p - 2 \\
 z_3 &= p - 1 \quad ; \quad b_4 = 2(p - 3) \\
 z_4 &= p - 5 \quad ; \quad b_5 = 2p - 5 \\
 z_5 &= p - 1 \quad ; \quad b_6 = 3(p - 3) \\
 z_6 &= p - 5 \quad ; \quad b_7 = 3p - 8
\end{align*}
\]

Thus the result holds for $i = 0, 1, \ldots, 6$.

Preliminary enquiry suggested that

\[
b_i = \begin{cases}
 0 & \text{if } i = 0 \\
 \left(\frac{i - 1}{2}\right)p - \left(\frac{3i - 5}{2}\right) & \text{if } i \text{ is odd} \\
 \frac{i}{2}(p - 3) & \text{if } i \text{ is even}
\end{cases}
\]

We now follow the induction on i. Assuming the result for $i = m$, we consider the following two cases:

Case I: Suppose that m is odd. Then

\[
z_m = p - 1 \quad \text{and} \quad b_{m+1} = \left(\frac{m + 1}{2}\right)(p - 3).
\]

In equation (4.3.5) by the substitution $i = m + 1$ we obtain
$z_{m+1} + b_{m+2} = (p-3) \sum_{j=0}^{m} x_j + (p-2)x_{m+1} + b_{m+1}$

$= (p-3) \left[2 + \sum_{j=1}^{m} x_j \right] + (p-2)(p-1) + \left(\frac{m+1}{2} \right)(p-3)$

$= (p-3) \left[2 + \left(\frac{m-1}{2} \right)(p-1) + (p-2) \right] + (p-2) + \left(\frac{m+1}{2} \right)(p-3)$

$= \left(\frac{m+1}{2} \right)p^2 + \left(\frac{1-3m}{2} \right)p - 5$

$= \left\{ \left(\frac{m+1}{2} \right)p - \left(\frac{3m+1}{2} \right) \right\}p + (p-5)$

$\therefore z_{m+1} = p - 5$ and $b_{m+2} = \left\{ \left(\frac{m+1}{2} \right)p - \left(\frac{3m+1}{2} \right) \right\}$

Case II: Suppose that m is even. So,

$z_m = p - 5$ and $b_{m+1} = \left(\frac{m}{2} \right)p - \left(\frac{3m-2}{2} \right)$.

In equation (4.3.5) by the substitution $i = m+1$ we obtain,

$z_{m+1} + b_{m+2} = (p-3) \sum_{j=0}^{m} x_j + (p-2)x_{m+1} + b_{m+1}$

$= (p-3) \left[2 + \sum_{j=1}^{m} x_j \right] + (p-2)(p-1) + \frac{m}{2}p - \left(\frac{3m-2}{2} \right)$

$= (p-3)\left[2 + \frac{m}{2}(p-1) \right] + (p^2 - 4p + 4) + \frac{m}{2}p - \left(\frac{3m-2}{2} \right)$

$= \left(\frac{m+2}{2} \right)p^2 + \left(\frac{m}{2} - 2m - 2 \right)p - 1$

$= \left\{ \left(\frac{m+2}{2} \right)p - \left(\frac{3m+6}{2} \right) \right\}p + (p-1)$

$= \left(\frac{m+2}{2} \right)(p-3)p + (p-1)$

$\therefore z_{m+1} = p - 1$ and $b_{m+2} = \left(\frac{m+2}{2} \right)(p-3)$.
Thus the result follows by induction.

We now consider the function \(f_k : R_0 \rightarrow R_k \) defined by

\[
\begin{align*}
f_k(b_i) &= \begin{cases}
(k + 1)b_i & \text{if } i = 2 \\
(k + 1)b_i - k & \text{if } i = 3
\end{cases}
\end{align*}
\]

where \(R_0 = (b_2, b_3) = (p - 3, p - 2) \)

\[
\therefore \left[I_p \left(\frac{p + 1}{2} \right) \right] I_p \left(\frac{p - 1}{2} \right) = (0, 1, R_0) ; f_k
\]

Theorem 4.3.11. For the rational integer

\[
a_k = \sum_{i=0}^{k} 3c_i \in \Omega_p
\]

\(I_p(a_k) \) is a recurring \(p \)-adic integer of degree 1.

Let \(I_p(a_k) = \{ x_0, R_k \} \).

Case I: If \(3 \mid (p + 1) \) then \(x_0 = \frac{p + 1}{3} \) and \(|R_k| = 3(k + 1) \) or \(2(k + 1) \) according as \(k \) is odd or even respectively.

(i) In case \(k \) is odd we write \(R_k = (x_1, x_2, \ldots, x_{k+1}, x_{k+2}, \ldots, x_{2k+2}, x_{2k+3}, \ldots, x_{3k+3}) \)

i.e. we divide \(R_k \) into three segments of equal lengths.

In the 1st segment, elements occupying odd positions are \(\frac{p - 2}{3} \) except the last one i.e. \(x_{k+1} \) which is always 0.

In the 2nd segment, all the elements occupying odd positions are \(\frac{2p - 1}{3} \), while all the elements occupying even positions are \(\frac{2p - 1}{3} \) except \(x_{2k+2} \) which is always 0.

In the 3rd segment, the last element is \(\frac{p - 2}{3} \) and all other elements in this segment are \(p - 1 \).

(ii) In case \(k \) is even we write \(R_k = (x_1, x_2, \ldots, x_{k+1}, x_{k+2}, \ldots, x_{2k+2}) \)

In the 1st segment, elements occupying odd positions are \(\frac{p - 2}{3} \) except the last one i.e. \(x_{k+1} \)
which is equal to \(\frac{2p - 1}{3}\), while all the elements occupying even positions are \(\frac{2p - 1}{3}\).

In the 2nd segment, the last element is \(\frac{p - 2}{3}\) and all other elements are \(p - 1\).

Case II: If \(3 \mid (2p + 1)\) then \(x_0 = \frac{2p + 1}{3}\) and \(|R_k| = (k + 1)\) and it is given by,

\[
R_k = \left(\frac{(p - 1)^k}{3}, \frac{2(p - 1)}{3}\right)
\]

Moreover,

\[[a_k x \equiv e_0 \pmod{p}] = \{0, 2, 5, 8, 11, \ldots, 3k - 1, R'_k\} \quad \text{where} \quad R'_k = (3k + 2) \]

Proof: We know that either \(3 \mid (p+1)\) or \(3 \mid (2p+1)\). This motivates us to consider these two cases separately during the process of evaluation of the Diophantine equations evolving from the relation \(a_0 x \equiv e_0 \pmod{p}\).

For \(k = 0, a_0 = 3e_0\) and hence for \(x = \{x_i\} \in \Omega_p\)

\[a_0 x = \{3x_0, 3x_1, 3x_2, \ldots\} \]

Case I: Suppose that \((p + 1)\) is divisible by 3 i.e. \(p + 1 = 3m\) for some \(m \in \mathbb{Z}\).

Now,

\[
3x_0 \equiv 1 \pmod{p} \Rightarrow x_0 = \frac{p + 1}{3} \quad b_1 = 1
\]

\[
3x_1 + 1 \equiv 0 \pmod{p} \Rightarrow x_1 = \frac{2p - 1}{3} \quad b_2 = 2[:: 2p - 1 = 3(2m - 1)]
\]

\[
3x_2 + 2 \equiv 0 \pmod{p} \Rightarrow x_2 = \frac{p - 2}{3} \quad b_3 = 1[:: p - 2 = 3(m - 1)]
\]

and so on.

\[\vdots \]

\[
J_p(a_0) = \left\{\frac{p + 1}{3}, R_0\right\} \quad \text{where} \quad R_0 = \left(\frac{2p - 1}{3}, \frac{p - 2}{3}\right)
\]

and \([a_0 x \equiv e_0 \pmod{p}] = \{0, R'_0\} \quad \text{where} \quad R'_0 = (1, 2)\]

Case II: Suppose that \((2p + 1)\) is divisible by 3 i.e. \(2p + 1 = 3m\) for some \(m \in \mathbb{Z}\).

Now,
\[3x_0 \equiv 1 \pmod{p} \Rightarrow x_0 = \frac{2p + 1}{3} \quad b_1 = 2\]

\[3x_1 + 2 \equiv 0 \pmod{p} \Rightarrow x_1 = \frac{2(p - 1)}{3} \quad b_2 = 2[\because 2(p - 1) = 3(m - 1)]\]

and so on.

\[\therefore I_p(a_0) = \left\{ \frac{2p + 1}{3}, R_0 \right\} \quad \text{where} \quad R_0 = \left(\frac{2(p - 1)}{3} \right)\]

and \([a_0 x \equiv e_0 \pmod{p}] = \left\{ 0, R'_0 \right\} \quad \text{where} \quad R'_0 = (2)\]

For \(k = 1, a_1 = 3e_0 + 3e_1\) and hence for \(x = \{x_i\} \in \Omega_p\)

\[a_1 x = \{3x_0, 3x_1 + 3x_0, 3x_2 + 3x_1, \ldots\}\]

Case I: Suppose that \((p + 1)\) is divisible by 3 i.e. \(p + 1 = 3m\) for some \(m \in \mathbb{Z}\).

Now,

\[3x_0 \equiv 1 \pmod{p} \Rightarrow x_0 = \frac{p + 1}{3} \quad b_1 = 1\]

\[3x_1 + p + 2 \equiv 0 \pmod{p} \Rightarrow x_1 = \frac{p - 2}{3} \quad b_2 = 2[\because p - 2 = 3(m - 1)]\]

\[3x_2 + p \equiv 0 \pmod{p} \Rightarrow x_2 = 0 \quad b_3 = 1\]

\[3x_3 + 1 \equiv 0 \pmod{p} \Rightarrow x_3 = \frac{2p - 1}{3} \quad b_4 = 2\]

\[3x_4 + 2p + 1 \equiv 0 \pmod{p} \Rightarrow x_4 = \frac{2p - 1}{3} \quad b_5 = 4\]

\[3x_5 + 2p + 3 \equiv 0 \pmod{p} \Rightarrow x_5 = p - 1 \quad b_6 = 5\]

and so on.

\[\therefore I_p(a_1) = \left\{ \frac{p + 1}{3}, R_1 \right\} \quad \text{where} \quad R_1 = \left(\frac{p - 2}{3}, 0, \left(\frac{2p - 1}{3} \right)^2, (p - 1), \frac{p - 2}{3} \right)\]

Let us assume that the result holds for \(k\). We now consider the following two cases:

(a) Let \(k\) be odd.

As we know the relations \(a_{k+1}x \equiv e_0 \pmod{p}\) and \(a_kx \equiv e_0 \pmod{p}\) generate the same
set of equations up-to \((k + 1)th\) step, the solutions of the equations obtained from \(a_{k+1}x \equiv e_0 \pmod{p}\) up-to \((k + 1)th\) steps are given by,

\[
x_0 = \frac{p + 1}{3}, x_1 = \frac{p - 2}{3}, x_2 = \frac{2p - 1}{3}, \ldots, x_k = \frac{p - 2}{3}
\]

with \(b_{k+1} = \frac{3k + 1}{2}\).

Therefore the equation obtained from $a_{k+1}x \equiv e_0 \pmod{p}$ in $(k + 2)^{th}$ step is given by,

$$3x_{k+1} + 3\left(\frac{k + 1}{2}\right)\left(\frac{p - 2}{3}\right) + 3\left(\frac{k - 1}{2}\right)\left(\frac{2p - 1}{3}\right) + 3\left(\frac{p + 1}{3}\right) + \left(\frac{3k + 1}{2}\right) \equiv 0 \pmod{p}.$$

that is $3x_{k+1} + \left(\frac{3k + 1}{2}\right)p + 1 \equiv 0 \pmod{p}$.

$$\therefore x_{k+1} = \frac{2p - 1}{3}, \ b_{k+2} = \frac{3k + 5}{2}$$

Next,

$$3x_{k+2} + 3\left(\frac{k + 1}{2}\right)\left(\frac{p - 2}{3}\right) + \left(\frac{2p - 1}{3}\right) + \left(\frac{3k + 5}{2}\right) \equiv 0 \pmod{p}$$

that is, $3x_{k+2} + \left(\frac{3(k + 1)}{2}\right)p + 1 \equiv 0 \pmod{p}$.

$$\therefore x_{k+2} = \frac{2p - 1}{3}, \ b_{k+3} = \frac{3k + 7}{2}.$$

Continuing this process we can see that,

$$x_{k+3} = p - 1, \ b_{k+4} = \frac{3k + 11}{2}$$

$$x_{k+4} = p - 1, \ b_{k+5} = \frac{3k + 13}{2}$$

$$\ldots \ldots \ldots$$

$$x_{2k+3} = p - 1, \ b_{2k+4} = 3k + 5$$

$$x_{2k+4} = \frac{p - 2}{3}, \ b_{2k+5} = 3k + 4$$

and so on.

Hence,

$$I_p(a_{k+1}) = \left\{ \frac{p + 1}{3}, R_{k+1} \right\} \quad \text{where} \quad |R_{k+1}| = 2(k + 2)$$

and $R_{k+1} = \left(\begin{array}{c} p - 2 \end{array} \begin{array}{c} 2p - 1 \end{array} \begin{array}{c} 2p - 1 \end{array} \begin{array}{c} \cdots \end{array} \begin{array}{c} (p - 1)^{k+1} \end{array} \begin{array}{c} p - 2 \end{array} \begin{array}{c} 3 \end{array} \begin{array}{c} 3 \end{array} \begin{array}{c} 3 \end{array} \begin{array}{c} (k+2)\text{times} \end{array} \begin{array}{c} (k+2)\text{times} \end{array} \right)$
Thus the result holds for \((k + 1)\).

(b) Let \(k\) be even.

The solutions of the equations obtained from \(a_{k+1}x \equiv e_0 \pmod{p}\) up-to \((k + 1)\)th steps are given by,

\[
\begin{align*}
x_0 &= \frac{p+1}{3},
x_1 &= \frac{p-2}{3},
x_2 &= \frac{2p-1}{3},
\ldots ,
x_k &= \frac{2p-1}{3},
\end{align*}
\]

with \(b_{k+1} = \frac{3k+2}{2}\).

Thus the equation obtained from \(a_{k+1}x \equiv e_0 \pmod{p}\) in \((k + 2)\)th step is given by,

\[
3x_{k+1} + 3\left(\frac{k}{2}\right)\left(\frac{p-2}{3} + \frac{2p-1}{3}\right) + 3\left(\frac{p+1}{3}\right) + \left(\frac{3k+2}{2}\right) \equiv 0 \pmod{p}.
\]

that is \(3x_{k+1} + \left(\frac{3k+2}{2}\right) p + 2 \equiv 0 \pmod{p}\).

\[
\therefore x_{k+1} = \frac{p-2}{3}, \quad b_{k+2} = \frac{3k+4}{2}.
\]

Next, \(3x_{k+2} + 3\left(\frac{k}{2} + 1\right)\left(\frac{p-2}{3}\right) + 3\frac{k}{2}\left(\frac{2p-1}{3}\right) + \left(\frac{3k+4}{2}\right) \equiv 0 \pmod{p}.
\]

that is \(3x_{k+2} + \left(\frac{3k+2}{2}\right) p \equiv 0 \pmod{p},\)

\[
\therefore x_{k+2} = 0, \quad b_{k+3} = \frac{3k+2}{2}.
\]

Continuing this process it can be seen that,
\[x_{k+3} = \frac{2p - 1}{3}, \quad b_{k+4} = \frac{3k + 4}{2} \]

\[x_{k+4} = \frac{p - 2}{3}, \quad b_{k+5} = \frac{3k + 2}{2} \]

\[x_{k+5} = \frac{2p - 1}{3}, \quad b_{k+6} = \frac{3k + 4}{2} \]

\[\ldots \ldots \ldots \ldots \ldots \]

\[\ldots \ldots \ldots \ldots \ldots \]

\[x_{2k+3} = \frac{2p - 1}{3}, \quad b_{2k+4} = \frac{3k + 4}{2} \]

Now

\[3x_{2k+4} + 3 \cdot \frac{k}{2} \left(\frac{p - 2}{3} \right) + 3 \left(\frac{k}{2} + 1 \right) \left(\frac{2p - 1}{3} \right) + \left(\frac{3k + 4}{2} \right) \equiv 0 \pmod{p}. \]

that is, \(3x_{2k+4} + \left(\frac{3k + 4}{2} \right) p + 1 \equiv 0 \pmod{p} \).

\[\because x_{2k+4} = \frac{2p - 1}{3}, \quad b_{2k+5} = \frac{3k + 8}{2}. \]

Next,

\[3x_{2k+5} + 3 \cdot \frac{k}{2} \left(\frac{p - 2}{3} \right) + 3 \left(\frac{k}{2} + 1 \right) \left(\frac{2p - 1}{3} \right) + \left(\frac{3k + 8}{2} \right) \equiv 0 \pmod{p}. \]

that is, \(3x_{2k+5} + \left(\frac{3k + 4}{2} \right) p + 3 \equiv 0 \pmod{p} \).

\[\therefore x_{2k+5} = p - 1, \quad b_{2k+6} = \frac{3k + 10}{2}. \]

Continuing this process it can be seen that,

\[x_{2k+6} = p - 1, \quad b_{2k+7} = \frac{3k + 14}{2} \]

\[\ldots \ldots \ldots \ldots \ldots \]

\[\ldots \ldots \ldots \ldots \ldots \]

\[x_{2k+4} = p - 1, \quad b_{3k+5} = \frac{6k + 8}{2} \]

\[x_{3k+5} = p - 1, \quad b_{3k+6} = 3k + 5 \]

91
Next,

\[3x_{3k+6} + 3(k + 1)(p - 1) + (3k + 5) \equiv 0 \pmod{p} \]

that is, \(3x_{3k+6} + 3(k + 1)p + 2 \equiv 0 \pmod{p} \)

\[\therefore x_{3k+6} = \frac{p-2}{3}, \quad b_{3k+7} = 3k + 4 \]

and so on.

Hence the result holds for \((k + 1)\).

Thus the result follows by induction.

\textbf{Case II:} Let \(3 \mid (2p + 1)\).

It can be seen that the result holds for \(k = 1\) and \(k = 2\).

Let the result holds for \(k\).

The solutions of the equations obtained from \(a_{k+1}x \equiv e_0 \pmod{p}\) up-to \((k + 1)^{th}\) steps are given by,

\[x_0 = \frac{2p+1}{3}, \quad x_1 = p - 1, \quad x_2 = p - 1, \ldots, x_k = p - 1 \text{ with } \]

\[b_{k+1} = 3k + 2. \]

Now,

\[3x_{k+1} + 3 \left(\frac{2p+1}{3} \right) + 3k(p - 1) + (3k + 2) \equiv 0 \pmod{p} \]

that is, \(3x_{k+1} + (3k + 2)p + 3 \equiv 0 \pmod{p}\)

\[\therefore x_{k+1} = p - 1, \quad b_{k+2} = 3k + 5 \]

Also,

\[3x_{k+2} + 3(k+1)(p - 1) + (3k + 5) \equiv 0 \pmod{p}. \]
that is, \(3x_{k+2} + (3k + 1)p + 2 \equiv 0 \pmod{p}\).

\[x_{k+2} = \frac{2(p-1)}{3}, \quad b_{k+3} = 3k + 5.\]

and so on.

\(I_p(a_{k+1}) = \left\{ \frac{2p+1}{3}, R_{k+1} \right\}\) where \(R_{k+1} = \left((p-1)^{k+1}, \frac{2(p-1)}{3} \right)\)

and \([a_{k+1}x \equiv e_0 \pmod{p}] = \{0, 2, 5, 8, \ldots, 3k + 2, R'_{k+1} \}\) where \(R'_{k+1} = (3k + 5)\).

The result follows by induction.

Theorem 4.3.12. For the rational integer \(a_k = \sum_{i=0}^{k} 4e_i \in \Omega_p; I_p(a_k)\) is a recurring \(p\)-adic integer of degree 1 with the recurred se \(R_k\) and it is given by,

\[(a) \quad I_p(a_k) = \left\{ \frac{p+1}{4}, R_k \right\}\) where \(R_k = \left(\left(\frac{p-1}{2} \right)^k, 3p-1, \frac{3(p-1)}{4}, \frac{p-3}{4} \right)\), provided \(4 \mid (p+1)\).

\[(b) \quad I_p(a_k) = \left\{ \frac{3p+1}{4}, R_k \right\}\) where \(R_k = \left((p-1)^k, \frac{3(p-1)}{4} \right)\), provided \(4 \mid (p-1)\).

Proof: (a) Let \(4 \mid (p+1)\).

It can be easily seen that the result holds for \(k = 1\) and \(k = 2\). Let us assume that the result holds for \(k\). The solutions of the equations obtained from \(a_{k+1}x \equiv e_0 \pmod{p}\) up-to \((k+1)\)th steps are,

\[x_0 = \frac{p+1}{4}, x_1 = \frac{p-1}{2}, x_2 = \frac{p-1}{2}, \ldots, x_k = \frac{p-1}{2}\]

with \(b_{k+1} = 2k + 1\).

Now,

\[4x_{k+1} + (p+1) + 2k(p-1) + (2k+1) \equiv 0 \pmod{p}\]

93
i.e. \(4x_{k+1} + (2k + 1)p + 2 \equiv 0 \pmod{p} \)

\[
\therefore x_{k+1} = \frac{p - 1}{2}, \quad b_{k+2} = 2k + 3.
\]

Next,

\[4x_{k+2} + 2(k + 1)(p - 1) + (2k + 3) \equiv 0 \pmod{p}\]

i.e. \(4x_{k+2} + 2(k + 1)p + 1 \equiv 0 \pmod{p} \)

\[
\therefore x_{k+2} = \frac{3p - 1}{4}, \quad b_{k+3} = 2k + 5.
\]

Again,

\[4x_{k+3} + 2k(p - 1) + (3p - 1) + (2k + 5) \equiv 0 \pmod{p}\]

i.e. \(4x_{k+3} + (2k + 3)p + 4 \equiv 0 \pmod{p} \)

\[
\therefore x_{k+3} = p - 1, \quad b_{k+4} = 2k + 7.
\]

Continuing this process it can be seen that,

\[
x_{k+4} = p - 1, \quad b_{k+5} = 2k + 9
\]

\[
\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots
\]

\[
x_{2k+3} = p - 1, \quad b_{2k+4} = 4k + 7
\]

Lastly,

\[4x_{2k+4} + 4(k + 1)(p - 1) + (4k + 7) \equiv 0 \pmod{p}\]

\[
\therefore x_{2k+4} = \frac{p - 3}{4}, \quad b_{2k+5} = 4k + 5 \quad \text{and so on.}
\]

Thus the result follows by induction.
(b) Let $4 \mid (p - 1)$
It is easy to see that the result holds for $k = 1$ and $k = 2$. Assuming the result for k, the solutions of the equations obtained from $a_{k+1}x \equiv c_0 \pmod{p}$ up-to $(k+1)^{th}$ steps are given by,

$$x_0 = \frac{3p + 1}{4}, x_1 = p - 1, x_2 = p - 1, \ldots, x_k = p - 1$$

with $b_{k+1} = 4k + 3$.

Now,

$$4x_{k+1} + (3p + 1) + 4k(p - 1) + (4k + 3) \equiv 0 \pmod{p}$$

i.e. $4x_{k+1} + (4k + 3)p + 4 \equiv 0 \pmod{p}$

$\therefore x_{k+1} = p - 1, b_{k+2} = 4k + 7$.

Next,

$$4x_{k+2} + 4(k + 1)(p - 1) + (4k + 7) \equiv 0 \pmod{p}$$

i.e. $4x_{k+2} + 4(k + 1)p + 3 \equiv 0 \pmod{p}$

$\therefore x_{k+2} = \frac{3(p - 1)}{4}, b_{k+3} = 4k + 8$ and so on.

This shows that the result holds for $k + 1$.

The result follows by induction.

Theorem 4.3.13. If $\alpha, \beta \in B_0 = \{1, 2, 3, \ldots, p - 1\}$ such that $\alpha \beta = p - 1$ then

- (a) $I_p(\alpha) = \{p - \beta, R\}$ where $R = (p - \beta - 1)$

and $[\alpha x \equiv c_0 \pmod{p}] = \{0, R'\}$ where $R' = (\alpha - 1)$

- (b) $I_p(\beta) = \{p - \alpha, R\}$ where $R = (p - \alpha - 1)$
and \(\beta x \equiv e_0 \pmod{p} \) = \(\{0, R'\} \) where \(R' = (\beta - 1) \)

Proof: The relation \(\alpha x \equiv e_0 \pmod{p} \) gives us,

\[
\alpha x_0 \equiv 1 \pmod{p} \Rightarrow x_0 = p - \beta, b_1 = \alpha - 1
\]

\[
\alpha x_1 + \alpha - 1 \equiv 0 \pmod{p} \Rightarrow x_1 = p - \beta - 1, b_2 = \alpha - 1 \text{ and so on.}
\]

This proves (a).

Interchanging the roles of \(\alpha \) and \(\beta \) we get (b).

Theorem 4.3.14. (Generalization of Theorem 4.3.1(b) and Theorem 4.3.5(a))

If \(\alpha, \beta \) be two rational integers such that \(\alpha \beta = p + 1 \) then,

\[
I_p(\alpha) = \{\beta, R\} \text{ where } R = (p - \beta, \beta - 1)
\]

and \(I_p(\beta) = \{\alpha, R\} \) where \(R = (p - \alpha, \alpha - 1) \).

Corollary 4.3.15. If \(p, q_1, q_2, q_3 \) are all distinct primes and \(\alpha_1, \alpha_2, \alpha_3 \) are composites such that

\[
q_1\alpha_1 = q_2\alpha_2 = q_3\alpha_3 = p + 1
\]

then for \(j \neq k \), \(I_p(\alpha_j\alpha_k) \) is a recurring \(p \)-adic integer with a recurred set independent of \(p \).

Proof: Using some preliminary results of number theory it can be seen that,

\[
\alpha_j\alpha_k = \beta e_0 + \beta e_1 \text{ where } \beta = \gcd(\alpha_j, \alpha_k)
\]

By Theorems[4.3.7- 4.3.12] \(I_p(\alpha_j\alpha_k) \) is a recurring \(p \)-adic integer with a recurred set independent of \(p \).
Corollary 4.3.16. (a) If \(p, q_1, q_2, q_3 \) are all distinct primes such that \(q_1 \alpha_1 = q_2 \alpha_2 = q_3 \alpha_3 = p + 1 \) then \(I_p(\alpha_1 \alpha_2 \alpha_3) \) is a recurring \(p \)-adic integer with a recurred set independent of \(p \).

(b) If for a prime \(p \), \(2\alpha = p + 1 \) and \(\alpha \) is even then \(I_p(\alpha^2) \) is a recurring \(p \)-adic integer with a recurred set independent of \(p \).

Remark 4.3.17. Let us conclude this chapter with the observation that the sum of the degree of \(I_p(a) \) and the order of the recurred set \(R \) of \(I_p(a) \) is always equal to the sum of the degree of \([ax \equiv e_0 \pmod{p}] \) and the order of the recurred set \(R' \) of \([ax \equiv e_0 \pmod{p}] \) in each result incorporated in this chapter.

Moreover, we are left the most important question "Can we prove that for
\[
\alpha_k = \sum_{i=0}^{k} \alpha \varepsilon_i, \forall \alpha \in B = \{1, 2, 3, \ldots, p - 1\}, I_p(\alpha_k) \text{ a recurring } p \text{-adic integer with a } p-\text{independent recurred set } R?"

We are trying to deal with the problem stated above as follows: Let us consider \(x, y \in \Omega_p(p \geq 7) \) such that \(x - y = e_0 \). It follows that \(I_p(xy) = I_p(y) - I_p(x) \). This simple technique can be employed to evaluate the inverse of \(\alpha = \{\alpha, R\} \) where \(R = (0) \) with a composite value of \(\alpha \in B = \{1, 2, \ldots, p - 1\} \).

For instance if we choose \(x = \{3, R\} \) and \(y = \{2, R\} \) with \(R = (0) \) then
\[
x - y = x + \psi(y) = \{3, R\} + \{p - 2, R'\} \text{ where } R' = (p - 1) = \{1, R\} = e_0
\]
\[
\therefore I_p(xy) = I_p(y) - I_p(x) = I_p(y) + \psi(I_p(x))
\]
By Theorem 3.3.2(a) \(I_p(y) = \left\{ \frac{p + 1}{2}, R_1 \right\} \) where \(R_1 = \left(\frac{p - 1}{2}\right) \).

By Theorem 4.3.5(a) \(I_p(x) = \left\{ \frac{p + 1}{3}, R_2 \right\} \) where \(R_2 = \left(\frac{2p - 1}{3}, \frac{p - 2}{3}\right) \) or \(\left\{ \frac{2p + 1}{3}, R_3 \right\} \).
where $R_3 = \left(\frac{2(p-1)}{3}\right)$ according as $3 \mid p + 1$ or $3 \mid 2p + 1$ respectively.

In case $3 \mid p + 1$, by the Definition 2.2.7 we get,

$$
\psi(I_p(x)) = \left\{ \frac{2p-1}{3}, R_4 \right\}
\quad \text{where} \quad R_4 = \left(\frac{p-2}{3}, \frac{2p-1}{3}\right)
$$

$$
\therefore I_p(xy) = \left\{ \frac{p+1}{6}, R_5 \right\}
\quad \text{where} \quad R_5 = \left(\frac{5p-1}{6}, \frac{p-5}{6}\right)
$$

Here

$$
[I_p(y) - I_p(x)] = \{0, R'\} \quad \text{where} \quad R' = (1, 0)
$$

In case $3 \mid 2p + 1$, by the Definition 2.2.7 we get,

$$
\psi(I_p(x)) = \left\{ \frac{p-1}{3}, R_6 \right\}
\quad \text{where} \quad R_6 = \left(\frac{p-1}{3}\right)
$$

$$
\therefore I_p(xy) = \left\{ \frac{5p+1}{6}, R_7 \right\}
\quad \text{where} \quad R_7 = \left(\frac{5p-5}{6}\right)
$$

Here

$$
[I_p(y) - I_p(x)] = 0
$$

Thus it enable us to solve the problem for $\alpha = 6$ and $k = 0$.

In the same way if we choose $x, y \in \Omega_p (p \geq 13)$ such that $x = \{4, R\}$ and $y = \{3, R\}$ with $R = (0)$ then clearly $x - y = e_0$ and therefore

$$
I_p(xy) = I_p(y) - I_p(x) = I_p(y) + \psi(I_p(x))
$$

By Theorem 4.3.5(a) $I_p(y) = \left\{ \frac{p+1}{4}, R_1 \right\}$ where $R_1 = \left(\frac{2p-1}{3}, \frac{p-2}{3}\right)$ or $\left\{ \frac{2p+1}{3}, R_2 \right\}$

where $R_2 = \left(\frac{2(p-1)}{3}\right)$ according as $3 \mid p + 1$ or $3 \mid 2p + 1$ respectively.

By Theorem 4.3.12 $I_p(x) = \left\{ \frac{p+1}{4}, R_3 \right\}$ where $R_3 = \left(\frac{3p-1}{4}, \frac{p-3}{4}\right)$ or $\left\{ \frac{3p+1}{4}, R_4 \right\}$

where $R_4 = \left(\frac{3(p-1)}{4}\right)$ according as $4 \mid p + 1$ or $4 \mid p - 1$ respectively.

From the Definition 2.2.7 we have

$$
\psi(I_p(x)) = \left\{ \frac{3p-1}{4}, R_5 \right\}
\quad \text{where} \quad R_5 = \left(\frac{p-3}{4}, \frac{3p-1}{4}\right)
\quad \text{or} \quad \left\{ \frac{p-1}{4}, R_6 \right\}
$$
where \(R_6 = \left(\frac{p - 1}{4} \right) \) according as \(4 \mid p + 1 \) or \(4 \mid p - 1 \) respectively.
We now consider the following cases:

Case I: Suppose that $3 \mid (2p + 1)$ and $4 \mid (p - 1)$. Then

$$I_p(xy) = I_p(y) - I_p(x) = I_p(y) + \psi(I_p(x))$$

$$= \left\{ \frac{2p+1}{3}, R_2 \right\} + \left\{ \frac{p-1}{4}, R_6 \right\}$$

$$= \left\{ \frac{11p+1}{12}, R_7 \right\} \text{ where } R_7 = \left(\frac{11(p-1)}{12} \right)$$

Case II: Suppose that $3 \mid (2p + 1)$ and $4 \mid (p + 1)$. Then

$$I_p(xy) = I_p(y) - I_p(x) = I_p(y) + \psi(I_p(x))$$

$$= \left\{ \frac{2p+1}{3}, R_2 \right\} + \left\{ \frac{3p-1}{4}, R_5 \right\}$$

$$= \left\{ \frac{5p+1}{12}, R_8 \right\} \text{ where } R_8 = \left(\frac{11p-5}{12}, \frac{5p-11}{12} \right)$$

Case III: Suppose that $3 \mid (p + 1)$ and $4 \mid (p - 1)$. Then

$$I_p(xy) = I_p(y) - I_p(x) = I_p(y) + \psi(I_p(x))$$

$$= \left\{ \frac{p+1}{3}, R_1 \right\} + \left\{ \frac{p-1}{4}, R_6 \right\}$$

$$= \left\{ \frac{7p+1}{12}, R_9 \right\} \text{ where } R_9 = \left(\frac{11p-7}{12}, \frac{7p-11}{12} \right)$$
Case IV: Suppose that $3 \mid (2p + 1)$ and $4 \mid (p + 1)$. Then

$$I_p(xy) = I_p(y) - I_p(x)$$

$$= I_p(y) + \psi(I_p(x))$$

$$= \left\{ \frac{p + 1}{3}, R_1 \right\} + \left\{ \frac{3p - 1}{4}, R_6 \right\}$$

$$= \left\{ \frac{p + 1}{12}, R_{10} \right\} \text{ where } R_{10} = \left\{ \frac{11p - 1}{12}, \frac{p - 11}{12} \right\}$$

Thus we can conclude that the evaluation of $I_p(a_0)$ is possible for $\alpha = 12$ in the ring Ω_p.

But the most pertinent question remains unaddressed, that is, “Can we determine $I_p(a_k)$ where $a_k = \sum_{t=0}^{k} \alpha e_t$ for all $\alpha \in B = \{1, 2, 3, \cdots, p - 1\}$, and α is not a composite one?” It is evident that if we could determine $I_p(a_k)$ where $a_k = \sum_{t=0}^{k} \alpha e_t$ for all $\alpha \in B = \{1, 2, 3, \cdots, p - 1\}$, and at the same time α is not a composite one, then the technique developed earlier could be employed in determining the $I_p(a_k)$ whenever $a_k = \sum_{t=0}^{k} \alpha e_t$ for all $\alpha \in B = \{1, 2, 3, \cdots, p - 1\}$, and α is a composite one.