Contents

Preface
i
List of Tables
xi
List of Figures
 xv

Chapter 1

Introduction
01 - 48

1.1 Different Methods of Analytical Techniques
03
1.2 Classification of Electroanalytical Techniques
05
1.2.1 Conductimetry
06
1.2.2 Potentiometry
06
1.2.3 Amperometry and Voltammetry
07
1.3 Sensors
07
1.4 Types of Chemical Sensors
08
1.4.1 Electrochemical Sensors
09
1.4.2 Optical Sensors
09
1.4.3 Mass Sensitive Sensors
09
1.4.4 Heat Sensitive Sensors
09
1.5 Potentiometric Sensors
10
1.5.1 Ion Selective Electrodes (ISEs)
10
1.5.2 Coated-Wire Electrodes (CWEs)
11
1.5.3 Ion Selective Field Effect Transistors (ISFETs)
12
1.5.1.1 Glass Membrane
12
1.5.1.2 Sparingly Soluble Inorganic Salt Membranes
13
1.5.1.3 Polymer-immobilized Ionophore Membranes
13
1.5.1.4 Gel-immobilized and Chemically Bonded Enzyme Membranes
13
1.6 Potentiometric Ion Selective Electrodes
14
1.7 Solid State Ion Selective Electrodes
16
1.8 Performance Factors of a Potentiometric Ion Selective Electrode
17
1.8.1 Slope of the Electrode
17
1.8.2 Limit of Detection
18
1.8.3 Linear Concentration Range
18
1.8.4 Influence of pH
19
1.8.5 Response Time
19
1.8.6 Selectivity
19
1.8.7 Life Time or Shelf Life
20
1.9 Electroanalytical Techniques for Drugs 20
1.10 A Brief Review on Potentiometric Sensors for Drugs 22
1.11 Scope of the Present Investigation 47

Chapter 2

Materials and Methods 49 - 66

2.1 Reagents 49
2.2 Instruments used 50
2.3 Synthesis of the Ion Association Complexes 50
 2.3.1 Trimethoprim – MPA Ion Association (TMP-MPA) 50
 2.3.2 Trimethoprim – PTA Ion Association (TMP-PTA) 51
 2.3.3 Ketoconazole – MPA Ion Association (KET-MPA) 51
 2.3.4 Lamivudine – MPA Ion Association (LAM-MPA) 51
 2.3.5 Lamivudine – PTA Ion Association (LAM-PTA) 52
 2.3.6 Domperidone – PTA Ion Association (DOM-PTA) 52
 2.3.7 Nimesulide – MPA Ion Association (NIM-MPA) 52
 2.3.8 Nimesulide – STA Ion Association (NIM-STA) 53
 2.3.9 Lomefloxacin – STA Ion Association (LOM-STA) 53
 2.3.10 Lomefloxacin – MPA Ion Association (LOM-MPA) 53
2.4 Fabrication of the Sensors using the Prepared Ionophores 54
 2.4.1 Fabrication of the PVC Membrane Sensor 54
 2.4.2 Fabrication of the Carbon Paste Sensor 55
2.5 Preparation of the Drug Solutions 55
 2.5.1 Trimethoprim Solution 55
 2.5.2 Ketoconazole Solution 56
 2.5.3 Lamivudine Solution 56
 2.5.4 Domperidone Solution 56
 2.5.5 Nimesulide Solution 56
 2.5.6 Lomefloxacin Solution 56
2.6 Preparation of the Buffer Solutions 56
2.7 Potential Measurement and Calibration 58
2.8 Selectivity Study of a Developed Sensor 59
2.9 Preparation and Analysis of the Pharmaceutical Formulations 60
 2.9.1 Trimethoprim Formulation – Aubril 60
 2.9.2 Ketoconazole Formulations - Ketovate and Ketozole 60
 2.9.3 Lamivudine Formulation – Lamivir 61
 2.9.4 Domperidone Formulations - Vomihtop and Domitil 61
 2.9.5 Nimesulide Formulation – Nimulase 61
 2.9.6 Lomefloxacin Formulations - Lomedon and Lomegen 62
Chapter 3

Sensors for the Determination of Trimethoprim ------- 67 - 88

3.1 Introduction 67
3.2 Synthesis of the Ion Associations 69
3.3 Fabrication of the Carbon Paste Sensor 70
3.4 Potential Measurement and Calibration 71
3.5 Performance Characteristics of the Developed Sensors 72
 3.5.1 Optimisation of the Carbon Paste Composition 72
 3.5.2 Working Concentration Range, Slope and Response Time 74
 3.5.3 Effect of pH 74
 3.5.4 Potentiometric Selectivity 75
 3.5.5 Shelf Life or Life Time 76
3.6 Analytical Applications 76
 3.6.1 Determination of TMP in Pharmaceutical Formulations (Tablets) 76
 3.6.2 Recovery of TMP from Urine Sample 77
3.7 Conclusion 77

Chapter 4

Sensors for the Determination of Ketoconazole ------- 89 - 110

4.1 Introduction 89
4.2 Synthesis of the Ion Association 91
4.3 Fabrication of KET Membrane Sensor 91
4.4 Fabrication of KET Carbon Paste Sensor 92
4.5 Potential Measurement and Calibration 92
4.6 Performance Characteristics of the Developed Sensors 93
 4.6.1 Optimization Studies of the Two Types of Sensors 93
 4.6.2 Effect of Concentration of Internal Filling Solution 94
4.6.3 Effect of pH 95
4.6.4 Potentiometric Selectivity 95
4.6.5 Response Time and Life Time of the Sensors 96

4.7 Analytical Applications 96
4.7.1 Determination of KET in Pharmaceutical Formulations (Tablets) 97
4.7.2 Recovery of KET from Urine Sample 97

4.8 Conclusion 97

Chapter 5
Sensors for the Determination of Lamivudine --------- 111 - 142

5.1 Introduction 111
5.2 Synthesis of the Ion Associations 115
5.3 Fabrication of LAM Membrane Sensor 116
5.4 Fabrication of LAM Carbon Paste Sensor 116
5.5 Potential Measurement and Calibration 117
5.6 Performance Characteristics of the Developed Sensors 117
5.6.1 Optimization of the Membrane Composition 118
5.6.2 Optimization of the Carbon Paste Composition 119
5.6.3 Effect of Concentration of Internal Filling Solution 120
5.6.4 Working Concentration Range, Slope and Response Time 120
5.6.5 Effect of pH 122
5.6.6 Potentiometric Selectivity 123
5.6.7 Shelf Life or Life Time 123

5.7 Analytical Applications 124
5.7.1 Determination of LAM in Pharmaceutical Formulations (Tablets) 124
5.7.2 Recovery of LAM from Urine Sample 124

5.8 Conclusion 125

Chapter 6
Sensors for the Determination of Domperidone ------- 143 - 166

6.1 Introduction 143
6.2 Synthesis of the Ion Association 146
6.3 Fabrication of DOM Membrane Sensor 147
6.4 Fabrication of DOM Carbon Paste Sensor 147
6.5 Potential Measurement and Calibration 148
6.6 Performance Characteristics of the Developed Sensors 149
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6</td>
<td>6.6.1</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>6.6.2</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>6.6.3</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>6.6.4</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>6.6.5</td>
<td>152</td>
</tr>
<tr>
<td>6.7</td>
<td>6.7.1</td>
<td>153</td>
</tr>
<tr>
<td>6.7.2</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.8</td>
<td>154</td>
</tr>
</tbody>
</table>

Chapter 7

Sensors for the Determination of Nimesulide

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>167</td>
</tr>
<tr>
<td>7.2 Synthesis of the Ion Associations</td>
<td>169</td>
</tr>
<tr>
<td>7.3 Fabrication of NIM Membrane Sensor</td>
<td>170</td>
</tr>
<tr>
<td>7.4 Fabrication of NIM Carbon Paste Sensor</td>
<td>171</td>
</tr>
<tr>
<td>7.5 Potential Measurement and Calibration</td>
<td>171</td>
</tr>
<tr>
<td>7.6 Performance Characteristics of the Developed Sensors</td>
<td>172</td>
</tr>
<tr>
<td>7.6.1 Optimization of the Membrane Composition</td>
<td>172</td>
</tr>
<tr>
<td>7.6.2 Optimization of the Carbon Paste Composition</td>
<td>174</td>
</tr>
<tr>
<td>7.6.3 Effect of Concentration of Internal Filling Solution</td>
<td>175</td>
</tr>
<tr>
<td>7.6.4 Working Concentration Range, Slope and Response Time</td>
<td>175</td>
</tr>
<tr>
<td>7.6.5 Effect of pH</td>
<td>177</td>
</tr>
<tr>
<td>7.6.6 Potentiometric Selectivity</td>
<td>177</td>
</tr>
<tr>
<td>7.6.7 Shelf Life or Life Time</td>
<td>178</td>
</tr>
<tr>
<td>7.7 Analytical Applications</td>
<td>178</td>
</tr>
<tr>
<td>7.7.1 Determination of NIM in Pharmaceutical Formulations (Tablets)</td>
<td>178</td>
</tr>
<tr>
<td>7.7.2 Recovery of NIM from Urine Sample</td>
<td>179</td>
</tr>
<tr>
<td>7.8 Conclusion</td>
<td>179</td>
</tr>
</tbody>
</table>

Chapter 8

Sensors for the Determination of Lomefloxacin

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>199</td>
</tr>
<tr>
<td>8.2 Synthesis of the Ion Associations</td>
<td>202</td>
</tr>
<tr>
<td>8.3 Fabrication of the LOM Membrane Sensor</td>
<td>203</td>
</tr>
<tr>
<td>8.4 Potential Measurement and Calibration</td>
<td>203</td>
</tr>
</tbody>
</table>
8.5 Performance Characteristics of the Developed Sensors 204
 8.5.1 Optimization of the Membrane Composition 204
 8.5.2 Effect of Concentration of Internal Filling Solution 206
 8.5.3 Working Concentration Range, Slope and Response Time 206
 8.5.4 Effect of pH 208
 8.5.5 Potentiometric Selectivity 208
 8.5.6 Shelf Life or Life Time 209

8.6 Analytical Applications 209
 8.6.1 Determination of LOM in Pharmaceutical Formulations (Tablets) 209
 8.6.2 Recovery of LOM from Urine Sample 210

8.7 Conclusion 210

Chapter 9
Conclusions---223 - 226

References--227 - 248

Research Papers Published------------------------249 - 252