TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>i-iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iii-vi</td>
</tr>
<tr>
<td>List of Plates</td>
<td>vii-viii</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>ix</td>
</tr>
<tr>
<td>Abstract</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1: Introduction</td>
<td>1-35</td>
</tr>
<tr>
<td>1.1 Medicinal Plants</td>
<td>1-2</td>
</tr>
<tr>
<td>1.2 India: Repository of medicinal plants</td>
<td>2-3</td>
</tr>
<tr>
<td>1.3 Therapeutic properties of plants</td>
<td>3-10</td>
</tr>
<tr>
<td>1.3.1 Antimicrobial properties of medicinal plants</td>
<td></td>
</tr>
<tr>
<td>1.3.2 Anticancer properties of medicinal plants</td>
<td></td>
</tr>
<tr>
<td>1.3.3 Anti-inflammatory and analgesic properties of medicinal plants</td>
<td></td>
</tr>
<tr>
<td>1.3.4 Hepatoprotective properties of medicinal plants</td>
<td></td>
</tr>
<tr>
<td>1.3.5 Neuroprotective properties of medicinal plants</td>
<td></td>
</tr>
<tr>
<td>1.4 Nigella Sativa Linn: A Therapeutic plant</td>
<td>11-22</td>
</tr>
<tr>
<td>1.4.1 Classification</td>
<td></td>
</tr>
<tr>
<td>1.4.2 Description</td>
<td></td>
</tr>
<tr>
<td>1.4.3 Vernacular names of N. sativa L.</td>
<td></td>
</tr>
<tr>
<td>1.4.4 Habitat and distribution</td>
<td></td>
</tr>
<tr>
<td>1.4.5 Appearance and texture of N. sativa L.</td>
<td></td>
</tr>
<tr>
<td>1.4.6 History of N. sativa L.: Folk medicine</td>
<td></td>
</tr>
<tr>
<td>1.4.7 Chemical composition of N. sativa L. seeds</td>
<td></td>
</tr>
<tr>
<td>1.4.8 Organoleptic characteristics and physicochemical constants of N. sativa</td>
<td></td>
</tr>
<tr>
<td>1.4.9 Clinical/Pharmacological activities of N. sativa L.</td>
<td></td>
</tr>
</tbody>
</table>
1.5 Germination and biochemical changes during germination of Seed 23-24
1.6 Aims and objectives 25
1.7 Significance of the proposed study 26
1.8 References 27-35

Chapter 2: Phytochemical Analysis and Antibacterial Activity of Nigella Sativa L. Seed in Various Germination Phases 36-93

2.1 Rationale 36-37
2.2 Review of Literature 37-46
 2.2.1 Bacteria vs liver diseases
 2.2.2 Gram-positive and Gram-negative bacteria responsible for liver abscess
 2.2.2.1 Staphylococcus aureus
 2.2.2.2 Escherichia coli
 2.2.2.3 Pseudomonas aeruginosa
 2.2.2.4 Klebsiella pneumonia
 2.2.2.5 Proteus mirabilis
 2.2.3 Antimicrobial activity of Nigella sativa Linn.
2.3 Materials and Methods 47-56
 2.3.1 Collection of N. sativa seeds
 2.3.2 Germination of N. sativa seeds
 2.3.3 Harvest of germinated seeds
 2.3.4 Preparation of distilled extracts
 2.3.5 Clinical bacterial strains used for the study
 2.3.6 Inoculum preparation
 2.3.7 Qualitative study of phytochemicals of N. sativa during germination
 2.3.7.1 Test for sterol
 2.3.7.2 Test for alkaloids
 2.3.7.3 Test for tannins
 2.3.7.4 Test for saponins
 2.3.7.5 Test for phenolic compounds
2.3.7.6 Test for flavonoids
2.3.7.7 Test for terpenoids
2.3.7.8 Test for cardiac glycosides

2.3.8 Study of Phytochemicals by Thin Layer Chromatography

2.3.8.1 Preparation of TLC plate
2.3.8.2 Activation of TLC plate
2.3.8.3 Equilibration of TLC plate
2.3.8.4 Loading of sample
2.3.8.5 Running the sample
2.3.8.6 Analysis of data
2.3.8.7 TLC for sterol
2.3.8.8 TLC for alkaloids
2.3.8.9 TLC for phenolic compounds
2.3.8.10 TLC for flavonoids
2.3.8.11 TLC for glycosides

2.3.9 Liquid Chromatography Electrospray ionization Mass Spectrometry (LC-ESI-MS) study of *N. sativa* extracts from different germination phases

2.3.10 Determination of *in vitro* anti-microbial effect of *N. sativa*

2.3.10.1 Broth dilution assay
2.3.10.2 Agar well diffusion assay

2.4 Results and Discussion

2.4.1 Phytochemical analysis of *N. sativa* extracts in different germination phases
2.4.2 Thin layer chromatography for phytochemicals of *N. sativa* extracts in different germination phases
2.4.3 LC-ESI-MS study of different extracts from germination phases of *N. sativa* seed
2.4.4 Antibacterial activity of *N. sativa* extracts from various germination phases against clinical bacterial strains
LIST OF CONTENTS

2.5 Conclusion 82
2.6 References 86-93

Chapter 3: In Vitro Cytotoxic and Antioxidant effects of Nigella sativa L. Seed in Various Germination Phases 94-123

3.1 Rationale 94-95

3.2 Review of Literature 95-99
3.2.1 Role of reactive oxygen species (ROS) in cancer
3.2.2 Benzo[a]Pyrene: A toxic polycyclic aromatic hydrocarbon
3.2.3 Anticancer and antioxidant properties of Nigella sativa L.

3.3 Materials and Methods 100-104
3.3.1 Collection of N. sativa seeds
3.3.2 Germination of N. sativa seeds
3.3.3 Harvesting of Germinated seed
3.3.4 Preparation of distilled extracts
3.3.5 Drugs and chemicals
3.3.6 Cell culture
3.3.7 Cytotoxicity screening
3.3.7.1 Cytotoxicity assay by MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium Bromide) method
3.3.7.2 Cytotoxicity assay by Sulphorhodamine B (SRB) method
3.3.7.3 ROS assay

3.4 Result and Discussion 105-116
3.4.1 In vitro cytotoxic activity of methanolic extract of N. sativa from different germination phases during MTT assay
3.4.2 In vitro cytotoxic activity of methanolic extract of N. sativa from different germination phases during SRB assay
3.4.3 ROS assay
3.5 Conclusion 116
3.6 References 117-123

Chapter 4: *In Vivo Anti-Inflammatory and Analgesic Activities of Nigella Sativa L. Seed in Various Germination Phases* 124-165

4.1 Rationale 124-125
4.2 Review of Literature 125-130
 4.2.1 Non-steroidal anti-inflammatory drugs (NSAIDs): Drugs to control inflammation and pain
 4.2.2 Adverse effects of NSAIDs
 4.2.2.1 Gastrointestinal (GI) toxicity
 4.2.2.2 Renal toxicity
 4.2.2.3 Hepatotoxicity
 4.2.3 Anti-inflammatory and analgesic activity of *Nigella sativa* L.
4.3 Materials and Methods 131-139
 4.3.1 Collection of *N. sativa* seeds
 4.3.2 Germination of *N. sativa* seeds
 4.3.3 Harvest of germinated seeds
 4.3.4 Preparation of distilled extracts
 4.3.5 Animals
 4.3.6 Animal handling and care
 4.3.7 Oral administration of doses
 4.3.8 Drugs and chemicals
 4.3.9 Acute toxicity studies
 4.3.10 Anti-inflammatory activity
 4.3.11 Analgesic study
 4.3.12 Statistical analysis
 4.3.13 *In silico* anti-inflammatory and analgesic study of active constituents of *N. sativa*.
 4.3.13.1 Selection of anti-inflammatory drug target receptors
 4.3.13.2 Ligand preparation
4.3.13.3 Molecular docking using AutoDock

4.4 Result and Discussion 140-160

4.4.1 Acute Toxicity Studies

4.4.2 Effect of *N. sativa* treatment on kaolin induced paw oedema in rats

4.4.3 Effect of *N. sativa* treatment on analgesic activity in rats during hot plate test

4.3.4 *In silico* anti-inflammatory and analgesic study of active constituents of *N. sativa*

4.5 Conclusion 160

4.6 References 161-165

Chapter 5: In Vivo Hepatoprotective Activity of Nigella sativa L. Seed in Various Germination Phases on Rat Model 166-213

5.1 Rationale 166-167

5.2 Review of Literature 168-176

5.2.1 Hepatotoxicity (Causes and pattern of liver damage)

5.2.2 Carbon Tetrachloride: A most commonly used hepatotoxin

5.2.3 Free Radicals and oxidative damage in liver

5.2.4 Antioxidant

5.2.5 Hepatoprotective activities of *Nigella sativa* L.

5.3 Materials and Methods 177-187

5.3.1 Collection of *N. sativa* seeds

5.3.2 Germination of *N. sativa* seeds

5.3.3 Harvest of germinated seeds

5.3.4 Preparation of distilled extracts

5.3.5 Animals

5.3.6 Study design

5.3.6.1 Carbon tetrachloride induced hepatotoxicity

5.3.6.2 Hepatoprotective effects of *N. sativa*

5.3.7 Blood sampling

5.3.8 Biochemicals estimation
Chapter 5: Hepatoprotective Effect of N. sativa Extracts of Different Germination Phases Against CCl₄ Induced Hepatotoxicity

5.3.8.1 Liver enzymes
5.3.8.2 Tissue Homogenate Preparation
5.3.8.3 Lipid peroxide level
5.3.8.4 Superoxide dismutase
5.3.8.5 Catalase
5.3.8.6 Reduced glutathione
5.3.9 Histopathological study
5.3.10 Statistical analysis

5.4 Result and Discussion

5.4.1 Hepatoprotective effect of N. sativa extracts of different germination phases against CCl₄ induced hepatotoxicity.
 5.4.1.1 ALP
 5.4.1.2. SGOT
 5.4.1.3. SGPT
 5.4.1.4. Total bilirubin

5.4.2 Effect of N. sativa extracts of different germination phases on antioxidant enzymes level against CCl₄ induced hepatotoxicity.
 5.4.2.1. MDA level
 5.4.2.2. Superoxide dismutase
 5.4.2.3. Catalase
 5.4.2.4 Reduced glutathione GSH

5.4.3. Histopathology studies

5.5 Conclusions

5.6 References

Chapter 6: The Effect of Nigella Sativa L. in Various Germination Phases on various activities of central nervous system

6.1 Rationale
6.2 Review of Literature
 6.2.1. Neuronal Pathways and their neurotransmitters associated with neurodegenerative disorders
 6.2.2 Neuroprotective effects of Nigella sativa L.
6.3. Materials and Methods

6.3.1. Collection of *N. sativa* seeds
6.3.2. Germination of *N. sativa* seeds
6.3.3. Harvest of germinated seeds
6.3.4. Preparation of distilled extracts
6.3.5 Animals
6.3.6 Drugs
6.3.7 Anxiolytic activity
6.3.7.1 Elevated plus maze
6.3.7.2 Locomotor activity
6.3.7.3 Experimental protocol
6.3.8 Antiepileptic/Anticonvulsant activity
6.3.8.1 Maximal electroshock (MES) induced seizures
6.3.9 Antidepressant activity
6.3.9.1 Forced Swim Test (FST)
6.3.9.2 Tail Suspension Test (TST)

6.4. Results and Discussion

6.4.1 Anxiolytic activity
6.4.1.1 Effect of different treatments on anxiolytic effect during elevated plus maze test
6.4.1.2 Effect of different treatments on locomotor activity
6.4.2 Antiepileptic activity
6.4.2.1 Effect of different treatments on maximal electroshock induced seizures
6.4.3. Antidepressant activity
6.4.3.1 Effect of different treatments of *N. sativa* on immobility period of rats in (FST) and (TST).

6.5. Conclusion

6.6 References