


scaling of ground motion in the eastern United States, *Bull Seism Soc Am* 74; 2463-2482.


1093.

521p.

101. Lachet, C. and Bard, P.-Y. (1994), Numerical and theoretical investigations of the

magnitude and first motion pattern of local earthquakes, HYPO71 (revised), *U.S. Geol.
Surv. Open-File Rept. 75-311, 113 pp.*

103. Le Fort, P., 1975. Himalayas: the collided range, Present knowledge of the continental

for its genesis and emplacement; *J. Geophys. Res.* 86, 10545-10568

105. Le Fort, P., Cuney, M., Deniel, C., France-Lanord, C., Sheppard, S.M.F., Upreti, B.N.
134, 39-57


66; 639– 666.

geothermal field, *Geophysics* 44; 246-269.

110. Malagnini, L., L. Scognamiglio, A. Mercuri, A. Akinci, and K. Mayeda (2008), Source
scaling for ground motion prediction in central Italy: Evidence for strong non-self-similar

Chamoli Region, Garhwal Himalaya: evidence from local earthquake tomography


126.Molnar, P. and Chen, W.P. (1982), Seismicity and mountain building., In: K Hsu’ ,
Kumaun Himalayas from analysis of coda of local earthquakes, Journal of Seismology,
14, 4, 693-713.
129.Nogoshi, M. and Igarashi, T. (1971) On the amplitude characteristics of microtremor,
using microtremors on the ground surface, in Quarterly reports of the Railway Technical
Research Institute Tokyo, 30, 25–33.
and its applications, in Proceedings of the 12th World Conference on Earthquake
Engineering, Auckland, New Zealand.
Garhwal Himalaya from the aftershock sequence of 1999 Chamoli Earthquake, Bull.
the underthrusting Indian plate beneath the himalayas, J. Geophys. Res., 89, 1147-1163.
135.Padhy, S., Subhadra, N. and Kayal, J. R. (2011) Frequency-Dependent Attenuation of
136.Parolai, S., Bindi, D., Baumbauch, M., Grosser, H., Milkreit, C., Karakisa, S., and
volcanic areas: attenuation in the crust and amplitude response of the site at Mt. Etna,


Sr., 4, American Geophysical Union, Washington, D.C., 259-277.


