LIST OF FIGURES

Figure 2.1 Various nanomaterial-based drug delivery platforms: A. Polymeric nanoparticles/micelles B. Liposome C. Buckyball D. Carbon nanotube E. Colloidal gold nanoparticle F. Magnetic nanoparticle G. Quantum dots H. Multifunctional nanoparticle with metallic nanoparticle core (metallic nanoparticle) and semiconductor quantum dots surrounding the shell. Drug molecules can be attached to these carrier systems through encapsulation, mixing, covalent conjugation or electrostatic and affinity interactions ... 43

Figure 2.2 Molecular structure of lactide and glycolide based biodegradable polymer ... 44

Figure 2.3 Different method for preparation of PLGA nanoparticles: PLGA nanoparticles were synthesized by emulsion diffusion, solvent evaporation and nanoprecipitation methods. ... 45

Figure 2.4 Molecular structure of EFV .. 52

Figure 3.1 Overlay chromatograms of EFV standards: 5, 10, 20, 30, 40, 50, 60 µg/ml .. 68

Figure 3.2 Calibration curve of EFV ... 70

Figure 3.3 Overlay chromatograms of EFV standards in plasma: 0.3, 0.6, 1.2, 3.0, 6.0, 12 µg/ml .. 76

Figure 3.4 Calibration curve of EFV in plasma .. 78

Figure 3.5 Overlay chromatogram of standard blank and 0.3 µg/ml standard..... 79

Figure 3.6 Overlay chromatograms of EFV standards in brain homogenate: 0.3, 0.6, 1.2, 3.0, 6.0, 12 µg/ml .. 81

Figure 3.7 Overlay chromatograms of EFV standards in Kidney homogenate: 0.3, 0.6, 1.2, 3.0, 6.0, 12 µg/ml ... 82

Figure 3.8 Overlay chromatograms of EFV standards in liver homogenate: 0.3, 0.6, 1.2, 3.0, 6.0, 12 µg/ml ... 82

Figure 3.9 Overlay chromatograms of EFV standards in lung homogenate: 0.3, 0.6, 1.2, 3.0, 6.0, 12 µg/ml ... 82

Figure 3.10 Overlay chromatograms of EFV standards in spleen homogenate: 0.3, 0.6, 1.2, 3.0, 6.0, 12 µg/ml ... 83
Figure 3.11 Calibration curve of EFV in different tissue homogenate. (A) Brain (B) Kidney (C) Liver (D) Lung (E) Spleen

Figure 4.1 MPS and PDI of EFV NSs stabilized with poloxamer 188

Figure 4.2 MPS and PDI of EFV NSs stabilized with poloxamer 407

Figure 4.3 MPS and PDI of EFV NSs stabilized with PVP K30

Figure 4.4 Perturbation graph for effect of individual factor on response (A) Y₁ (MPS) and (B) Y₂ (ZP)

Figure 4.5 3D Response surface plots: (A) Effect of drug concentration (X₁) and milling time (X₄) on the response Y₁, (B) effect of polymer concentration (X₂) and surfactant concentration (X₃) on the response Y₁, (C) effect of surfactant concentration (X₃) and milling time (X₄) on the response Y₁

Figure 4.6 3D Response surface plots: (A) Effect of polymer concentration (X₂) and surfactant concentration (X₃) on the response Y₂, (B) effect of polymer concentration (X₂) and milling time (X₄) on the response Y₂

Figure 4.7 (A) Particle size distribution curve and (B) ZP curve of optimized EFV NS

Figure 4.8 DSC thermograms of (A) standard EFV, (B) SLS, (C) PVP K30, (D) trehalose (E) PM (F) LNS showing the preservation of crystalline form of EFV in NS

Figure 4.9 XRD spectra of (A) standard EFV, (B) SLS, (C) PVP K30, (D) trehalose (E) PM (F) LNS showing the preservation of crystalline form of EFV in NS

Figure 4.10 SEM images of (A) standard EFV and (B) LNS showing the particle size reduction with NS formulation. TEM image of (C) LNS showing spherical shape of EFV particles in NS

Figure 4.11 % Cumulative drug release of standard EFV (♦), PM (■), MF (▲), and LNS (▲) from capsule in 1% SLS in water dissolution media showing higher dissolution rate of LNS compared to standard EFV and MF. Data are represented as Mean ± SD; n=3 for each group

Figure 4.12 Amount of EFV absorbed from LNS (♦) and MF (▲) during in situ single pass intestinal perfusion studies showing higher absorption rate of EFV in NS compared to MF. Data are represented as Mean ± SD; n=3 for each group

Figure 4.13 Plasma concentration-time curves for standard EFV (♦), MF (■) and LNS (▲) after oral administration in rabbits at a dose of 10 mg/kg of
EFV showing higher absorption rate and enhanced bioavailability of EFV in LNS. Data are represented as Mean ± SD; n=3 for each group ... 128

Figure 5.1 Solubility of EFV in various excipients. Data are expressed as mean ± SD (n = 3) ... 159

Figure 5.2 Pseudoternary phase diagram prepared with the following components: (A) oil-captex 500, surfactant-tween 20, cosurfactant-transcutol HP, (B) oil-captex 500, surfactant-tween 20, cosurfactant-PEG 400, (C) oil-captex 500, surfactant-acconon MC8-2, cosurfactant-transcutol HP, (D) oil-captex 500, surfactant-acconon MC8-2, cosurfactant-PEG 400. S/CoS ratio is 1:1, 2:1 and 3:1 .. 162

Figure 5.3 Pseudoternary phase diagram prepared with the following components: (A) oil-capryol 90, surfactant-tween 20, cosurfactant-transcutol HP, (B) oil-capryol 90, surfactant-tween 20, cosurfactant-PEG 400, (C) oil-capryol 90, surfactant-acconon MC8-2, cosurfactant-transcutol HP, (D) oil-capryol 90, surfactant-acconon MC8-2, cosurfactant-PEG 400. S/CoS ratio is 1:1, 2:1 and 3:1 .. 163

Figure 5.4 Phase diagram of group I-VIII mentioned in Table 5.5. The grainbore colour area represents SMEDDS region .. 164

Figure 5.5 2D contour plot for the effect of variables (X₁, X₂ and X₃) on the MDS (Y₁) of diluted EFV loaded L-SMEDDS .. 170

Figure 5.6 2D contour plot for the effect of variables (X₁, X₂ and X₃) on the % T (Y₂) of diluted EFV loaded L-SMEDDS .. 170

Figure 5.7 (A) Droplet size distribution curve and (B) ZP curve of optimized EFV L-SMEDDS after dilution with double distilled water 171

Figure 5.8 (A) Droplet size distribution curve and (B) ZP curve of optimized EFV S-SMEDDS after dilution with double distilled water 172

Figure 5.9 DSC thermograms of (A) standard EFV, (B) Aerosil 200, (C) PM, (D) S-SMEDDS ... 175

Figure 5.10 XRD spectra of (A) S-SMEDDS, (B) PM, (C) Aerosil 200, (D) standard EFV ... 176

Figure 5.11 SEM images of (A) standard EFV (B) Aerosil 200 and (C) S-SMEDDS ... 177

Figure 5.12 TEM image of diluted EFV loaded L-SMEDDS showing spherical shape of EFV particles in L-SMEDDS 178

Figure 5.13 % Cumulative drug release of standard EFV (●), MF (♦), L-SMEDDS (▲), and S-SMEDDS (■) from capsule in 1% SLS in water dissolution media showing no significant difference between L- and S-SMEDDS
whereas showing higher dissolution rate of SMEDDS compared to standard EFV and MF. Data are represented as Mean ± SD; n=3 for each group

Figure 5.14 Amount of EFV absorbed from MF (▲), L-SMEDDS (▲) and S-SMEDDS (■) during *in situ* single pass intestinal perfusion studies showing higher absorption rate of EFV in SMEDDS compared to MF. Data are represented as Mean ± SD; n=3 for each group

Figure 5.15 Plasma concentration-time curves for standard EFV (♦), MF (■), L-SMEDDS (▲) and S-SMEDDS (■) after oral administration in rabbits at a dose of 10 mg/kg of EFV showing higher absorption rate and enhanced bioavailability of EFV in SMEDDS. Data are represented as Mean ± SD; n=3 for each group

Figure 6.1 Perturbation graph for effect of individual factor on response (A) Y₁ (MPS) and (B) Y₂ (% EE)

Figure 6.2 3D Response surface plots: Effect of drug:polymer ratio (X₁) and surfactant concentration on the response (A) Y₁ (MPS) and (B) Y₂ (% EE)

Figure 6.3 (A) Particle size distribution curve and (B) ZP curve of optimized EFV loaded PLGA NPs

Figure 6.4 Calibration curve of MN

Figure 6.5 (A) Particle size distribution curve and (B) ZP curve of optimized EFV loaded PLGA-MN NPs

Figure 6.6 DSC thermograms of (A) standard EFV, (B) PLGA, (C) PLGA-MN, (D) EFV loaded PLGA NPs (E) EFV loaded PLGA-MN NPs

Figure 6.7 TEM images of EFV loaded PLGA NPs (A) and PLGA-MN NPs (B)

Figure 6.8 % Cumulative drug release of EFV loaded PLGA (▲) and PLGA-MN NPs (♦) in 1 % SLS in water dissolution media. Data are represented as Mean ± SD; n=3 for each group

Figure 6.9 Cell viability determinations for EFV solution (■), EFV loaded PLGA (■) and PLGA-MN NPs (■) after 48 h using MTT assay. Data presented as Mean ± SD, n = 8

Figure 6.10 Drug uptake by macrophages for EFV solution, EFV loaded PLGA and PLGA-MN NPs at different time points at 37 ± 2°C. Data presented as Mean ± SD, n = 3
Figure 6.11 Fluorescent NPs uptake by macrophages following 60 min incubation with 6-Coumarin loaded PLGA (A) and PLGA-MN NPs (B), Macrophages fluoresce due to NPs uptake 230

Figure 6.12 Biodistribution pattern of EFV solution (■), EFV loaded PLGA (■) and PLGA-MN NPs (■) in various organs; (A) liver, (B) spleen, (C) lung, (D) kidney, (E) brain. Data presented as Mean ± SD, n = 3.... 231