CONTENTS

CHAPTER I INTRODUCTION Page Nos.
1.1 Place of Dielectrics in Solid State Physics. 1 - 42
1.2 Classification of Dielectrics and their Polarization. ... 1
1.3 Electrets in general, their classification and nature of charge. ... 2
1.4 Thermoelectrets: Experimental Study ... 6
 (i) Substances capable of permanent polarization. ... 11
 (ii) Polarization of Thermoelectrets ... 13
 (iii) Life-Time of Thermoelectrets ... 14
 (iv) Dependence of Thermoelectret charges on ... 16
 (a) Thermal Treatment. ... 16
 (b) Polarizing Field. ... 18
 (c) Electrode Material. ... 20
 (d) Thickness. ... 21
 (e) Vapour. ... 21
 (f) Pressure. ... 21
 (v) Associated Effects in Thermoelectrets. ... 21
 (a) Piezo-Electric Effects. ... 21
 (b) Thermal Conductivity. ... 22
 (c) Irradiation Effects. ... 22
 (d) Effects of Alternating Fields. ... 23
 (e) Depolarization. ... 24
 (f) Pyroelectric Effects. ... 24
 (g) Noise in Thermoelectrets. ... 25
 (h) Magnetic Susceptibility. ... 25
1.5 Electrical Conductivity and Trapping Effects. ... 26
(a) Electrical Conductivity. ... 26
(b) Trapping Effects. ... 29

1.6 Permittivity and Loss angle tangent (tan \(\delta \)). ... 30

1.7 Theoretical Explanation of Thermoelectret State in Dielectrics. ... 32

1.8 Conclusion. ... 39

CHAPTER II
ELECTRICAL CONDUCTIVITY MEASUREMENTS OF INDIAN SUGAR-CANE WAX. ... 43 - 92

2.1 Introduction. ... 43

2.2 Dependence of Electrical Conductivity on various factors. ... 44
(a) Variation of Conductivity with Field. 45
(b) Variation of Conductivity with Temperature. ... 48
(c) Variation of Conductivity with Electrode Material. ... 50
(d) Variation of Conductivity with Thickness. ... 51
(e) Variation of Conductivity with Humidity. ... 52

2.3 Possible Types of Conduction Mechanisms in Dielectrics and Semiconductors. ... 52

2.4 Experimental Techniques for Conductivity Measurement. ... 55

2.5 Present Technique. ... 58
(a) Construction of Conductivity Cell. ... 59
(b) Preparation of the Wax Sample and the Cell for work. ... 60
(c) Voltage Source. ... 62
(d) Temperature Control. ... 62
(e) Current Measuring Instrument. ... 63
(f) Circuit arrangement and operating procedure for Current Measurement. ... 64
(g) Constants and Calibration of Conductivity Cell. ... 65
2.6 Details of Measurement.
(a) Variation of Current with Field. ... 68
(b) Variation of Current with Temperature. ... 69
(c) Variation of Current with Electrode Material. ... 70

2.7 Results. ... 70

2.8 Discussion. ... 76

CHAPTER III. SURFACE CHARGE STUDIES OF SUGAR-CANE WAX THERMOELECTrets. ... 93 - 138
3.1 Introduction. ... 93
3.2 (a) Methods of Preparation of Thermoelectrets. ... 93
(b) Methods of Measurement of Thermoelectret charge. ... 94
3.3 Present Method of Preparation of Thermoelectrets. ... 97
(a) Assembly for preparation of samples and Thermoelectrets. ... 97
(b) High Voltage Source. ... 101
(c) Thermostat. ... 101
(d) Preparation of Thermoelectrets. ... 101
3.4 Preservation of Thermoelectrets. ... 105
3.5 Present Method for Charge Measurement...
(A) Charge Measuring Electrode Assembly. ... 106
(B) Charge Measuring Apparatus and its Accessories. ... 108
(a) The Lindemann Electrometer. ... 108
(b) Portable Projector for Lindemann Electrometer. ... 111
(c) Lindemann Electrometer Power Supply. ... 112
(C) Calibration of the Lindemann Electrometer for Charge Measurement. ... 114
(D) Charge Measurement Procedure. ... 116
CHAPTER IV. MEASUREMENT OF DIELECTRIC CONSTANT OF INDIAN SUGAR-CANE WAX. ... 139 - 160

4.1 Introduction. ... 139

4.2 Dependence of Dielectric Constant on: ... 140
 (a) Temperature. ... 140
 (b) Frequency. ... 141
 (c) Field. ... 143
 (d) Humidity. ... 145

4.3 Experimental Techniques for Dielectric Constant Measurements. ... 145

4.4 Present Technique: ... 149
 (a) Construction of Cell for Dielectric Constant Measurement. ... 149
 (b) Preparation of the Wax Sample and the Cell for Work. ... 149
 (c) Temperature Control. ... 149
 (d) Dielectric Constant Measuring Bridge... 150
 (e) Circuit arrangement and operating procedure for Dielectric Constant Measurement. ... 152
 (f) Cell Constants. ... 153

4.5 Details of Measurement: ... 153
 (a) Determination of Stray Capacitance.... 153
 (b) Variation of Dielectric Constant with Temperature. ... 153
 (c) Variation of Dielectric Constant on Polarization. ... 154
CHAPTER V. X-RAY DIFFRACTION STUDY OF SUGAR-CANE WAX AND ITS THERMOELECTrets.

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page Nos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction.</td>
<td>161</td>
</tr>
<tr>
<td>5.2</td>
<td>Experimental Technique and Equipment:</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>(a) Preparation of Samples.</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>(b) X-ray Diffraction Unit and Accessories.</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>(c) X-ray Diffraction Cameras and Technique of recording Diffraction Patterns.</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>(d) Measurement of Diameter of Arcs and Rings.</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>(e) Measurement of Photographic Densities along the Rings.</td>
<td>172</td>
</tr>
<tr>
<td>5.3</td>
<td>Details of Samples prepared for X-ray Diffraction Studies.</td>
<td>173</td>
</tr>
<tr>
<td>5.4</td>
<td>Description of X-ray Diffraction Photographs.</td>
<td>176</td>
</tr>
<tr>
<td>5.5</td>
<td>Calculation of the values of Interplanar Spacings 'd' and assignment of hkl values.</td>
<td>177</td>
</tr>
<tr>
<td>5.6</td>
<td>Results.</td>
<td>180</td>
</tr>
<tr>
<td>5.7</td>
<td>Discussion.</td>
<td>182</td>
</tr>
</tbody>
</table>

CHAPTER VI. GENERAL DISCUSSION AND CONCLUSIONS.

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page Nos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction.</td>
<td>193</td>
</tr>
<tr>
<td>6.2</td>
<td>Chemical Composition of Sugar-Cane Wax and its structure.</td>
<td>194</td>
</tr>
<tr>
<td>6.3</td>
<td>Electrical Conductivity.</td>
<td>196</td>
</tr>
<tr>
<td>6.4</td>
<td>Thermoelectret.</td>
<td>201</td>
</tr>
<tr>
<td>6.5</td>
<td>Dielectric Constant.</td>
<td>203</td>
</tr>
<tr>
<td>6.6</td>
<td>X-ray Diffraction.</td>
<td>204</td>
</tr>
<tr>
<td>6.7</td>
<td>Correlation of Different Results.</td>
<td>205</td>
</tr>
<tr>
<td>6.8</td>
<td>Conclusions.</td>
<td>210</td>
</tr>
</tbody>
</table>

LITERATURE CITED

Published Paper attached in the next.