LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Map of Kachchh basin showing major geomorphic divisions. Note the vast area covered by the Great Rann and the Little Rann.</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Structural map of the Kachchh basin (after Biswas and Deshpande, 1970)</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Geological map of the Kachchh basin (after Biswas, 1993).</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Field photographs showing drilling sites at both the core locations and core pipe measurements during operation. (a) Dhordo core site, (b) Berada core site. Please note the foreground at Dhordo drill core site showing the salt encrusted rann surface whereas at Berada drill core site denotes typical banni surface with polygonal cracks on surface. (c) Pipe recovery after drilling and (d) Core recovery measurements, on site logging and packing of individual core pipes. Note that each pipe is having details of core length, recovery and filed logging information. Also, top and bottom of each core pipe is denoted.</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>X-Ray radiographs of all core pipes from Dhordo core site. Note the core excellent recovery and fine scale laminations in the core pipes.</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>X-Ray radiographs of all core pipes from Berada core site. Note the excellent core recovery and fine scale laminations in the core pipes.</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Schematic view of the multi-proxy studies carried out during the study.</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Schematic view of digestion procedure followed for Major, Trace and REE’s in sediment samples.</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Schematic view of sample processing protocol for Sr-Nd isotopic studies.</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Satellite image of Great Rann of Kachchh basin showing the variations in surface morphology. The image shows the completely dry rann surface as it appeared in the extreme arid season in May, 2003 (Source: www.earthobservatory.nasa.gov). The geomorphological divisions of the Great Rann (1-4) are also indicated. 1-Banni plain, 2-Supra tidal salt flat, 3-Inland saline flats and 4-Bet zone. (Pa-Pachham island, Kh-Khadir island, Be-Bela island, Ch-Chorar island).</td>
<td>30</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>N-S topographic profile across the Great Rann basin showing the geomorphic divisions. Vertical scale is highly exaggerated. The elevation data is based on the SOI topographical maps (survey years-1960-66).</td>
<td>31</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>a- Photograph showing the typical nature of the surface of the Banni plain. b- Photograph showing the typical extensive flat surface of the supra tidal salt flat. c- Close view of the large polygonal cracks in the salt crust. d- Photograph showing the thickness (~10 cm) of the salt crust.</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>a-View of the Inland saline flat to the north of Bela island. The scarp in the background marks the geomorphic expression of the Island Belt Fault (IBF). b- View of the typical salt crust free surface of the Bet zone. c- Northward view of the developing gullies in the northern most part of the Bet zone. d- Surface of the Bet zone covered with numerous bivalve shells which thrive during periods of submergence.</td>
<td>35</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>E-W trending topographic profile across the Bet zone.</td>
<td>37</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Google image showing a prominent channel feature. Red lines depict the transect of cross profiles given in Fig. 3.7.</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Cross profiles across the channel feature shown in Fig. 3.6.</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Topographic profile drawn over the crest of the Allahbund scarp.</td>
<td>42</td>
</tr>
</tbody>
</table>
supra tidal salt flat surface is also shown to indicate the height of the scarp. Vertical scale is highly exaggerated. The elevation data is based on the Survey of India topographical maps (survey years-1960-66).

Figure 3.9

a - View of the Allahbund scarp. Note the degraded nature of the scarp.
b - View of the crest part of the Allahbund scarp. A short stream incising through the crest and merging with the supra tidal salt flat in the distant background can be seen.
c - View of the gullied surface over the Allahbund scarp. Note the depth of incision in the gully. The surface here is free of aeolian sediments.

Figure 3.10

Topographic cross sections drawn across the E-W trending Allahbund scarp. The top profile is from the western extremity while the bottom one is from the eastern extremity of the scarp. The elevation data is based on the SOI topographical maps (survey years-1960-66).

Figure 3.11

a – Photomosaic of the northern escarpment of the Bela island. In the foreground is the rann surface.
b - View of the Khadir scarp. Note the fresh nature of the escarpments.

Figure 3.12

E-W topographic profiles drawn over the crest of the northern escarpments of (a) Bela, (b) Khadir and (c) Bhanjada islands.

Figure 3.13

a - Distant view of the western margin of the Khadir island.
b - Close view of the exposed section of the raised rann sediments.
c - Flat terraced surface of raised intertidal sediments.
d - View of the surface of raised intertidal sediments at the margin of the Bhanjada island.

Figure 3.14

a - View of a sea cave at the northern margin of Bela island (Loc. North of Kuda).
b - Close view of the lower notch in Bela island (Loc. North of Kuda).

Figure 4.1

Geomorphic map of the Bet Zone of Great Rann of Kachchh with spatial distribution of sampling stations along two transects. Transect-1 is ESE-WNW oriented transect along the southern margin of Bet Zone. Transect-2 is roughly N-S oriented transect running across the eastern margin of the Bet Zone.

Figure 4.2

Topographic profiles along the two transects. a) Transect-1 and b) Transect-2. The profiles drawn are based on the elevation variations data from the Survey of India topographic maps. Note the elevation variations i.e. microgeomorphic variations of the respective sampling sites as shown in figure.

Figure 4.3

Grain Size distribution at the sampling stations along two transects a) Transect-1 and b) Transect-2. Note that the sand proportions increases at the stations directly in contact with the inundating waters whereas the silty to clayey sediments belongs to the sheltered areas (low lying areas, depressions).

Figure 4.4

SEM photographs of the recovered foraminiferal assemblage.

3. Ammonia parkinsoniana (d’Orbigny, 1839); 3a. Spiral view; 3b. Umbilical view.
5. Elphidium discoideum (d’Orbigny) 5a. Spiral view; 5b. Umbilical view.
15. Gallitella Sp. 16a. Brizalina striatula (Cushman, 1992); 16b. A close view showing the longitudinal coaste.

Figure 4.5

Graph showing spatial distribution of Ammonia genus along the two
Figure 4.6 Graphs showing spatial distribution of foraminifera along the two transects.

Figure 5.1

a. Map of Kachchh basin showing the fault-controlled geomorphic set-up. Note the vast extent of the Great Rann forming the northern part of the basin. Unshaded areas are occupied by Mesozoic and Tertiary rocks. Boxed area shows the rocky islands of Pachcham and Khadir within the Great Rann. (Inset) Location map.
b. Satellite image of the northwestern part of Khadir and Bhanjada islands showing the location of the sections studied (source: www.googleearth.com).
c. Satellite image of the northwestern part of Pachcham and Kuar Bet island showing the location of the sections studied (source: www.googleearth.com).

Figure 5.2

a. View of the northwestern margin of the Khadir island. The foreground is the salt-encrusted rann surface and vertical cliff section of the raised rann sediments at the base of the island.
b. View of the southern cliff face of raised rann sediments rising above the rann surface at eastern fringe of the Bhanjada island. Part of the rocky island is visible to the left.
c. View of the raised rann sediments at southern margin of the Kuar Bet island. Rann surface is seen in the background.

Figure 5.3 Lithologs of the raised rann sediments in Khadir, Bhanjada and Kuar Bet islands in the Great Rann. Note the dominantly fine-grained lithology and the similarity in gross lithology in all the three islands. OSL dates obtained are also shown.

Figure 5.4

a. Photomicrograph of the sediments showing discoidal and nodular gypsum crystals.
b. Photomicrograph showing discoidal gypsum forming large agglutinates in the sediments.

Figure 5.5 Graphs showing vertical distribution and abundance zones of foraminiferal tests throughout the cliff sections at Khadir, Bhanjada and Kuar Bet islands.

Figure 5.6 Geomorphic map of the Great Rann of Kachchh basin with major faults. Locations of the two drilled cores are shown as solid squares.

Figure 5.7 Topographic section along the line covering core locations in the Great Rann of Kachch basin. Vertical scale is highly exaggerated. Note the locations of the cores (DH and BRD) with respect to the basin and the distance between two.

Figure 6.1 Photographs of the split core pipes of Dhordo core raised from north of Pachham Island, Great Rann of Kachch basin. Note the excellent recovery of the sediments.

Figure 6.2 Photographs of the split core pipes of Berada core raised from Banni plain of Great Rann basin. Note the excellent recovery of the sediments.

Figure 6.3 Photographs of the split core pipes of Dhordo core raised from north of Pachham Island, Great Rann of Kachch basin. Note the excellent recovery of the sediments.

Figure 6.4 Photographs of the split core pipes of Berada core raised from Banni plain of Great Rann basin. Note the excellent recovery of the sediments.

Figure 6.5 Age Model for the Great Rann of Kachchh sedimentation during past ~17ka BP based on six 14C dating horizons from both the cores (Dhordo and Berada cores).

Figure 6.6 The downcore grain size variations in Dhordo core is shown in the form of graphs with their textural classes following Flemming 2000.

Figure 6.7 The downcore grain size variations in Berada core is shown in the form of graphs with their textural classes following Flemming 2000.

Figure 7.1 Plate showing the foraminiferal assemblage recovered from Dhordo and Berada cores 1a, 1b. Globorotaloid sp. ; 2. Ammonia parkinsoniana 2a. Spiral view 2b. Umbilical view; 3. Ammonia tepida. 3a Spiral view 3b. Umbilical view; 4. Ammonia beccarii 4a Spiral view 4b. Umbilical view; 5. Calcarina carcal; 6a. Elphidium excavatum, 6b. Close view showing the umbilicus and granules along the sutures. 7. Elphidium clavatum; 8a. Elphidium williamsoni, 8b. Close view; Criboelphidium oceانensis; 10a. Haynesina depressula, 10b. Close view showing the

Figure 7.2 SEM images of the recovered foraminifera from the Dhordo and Berada Cores

Figure 7.3 Graphs showing down core variations of foraminiferal species in Dhordo core

Figure 7.4 Graphs showing down core variations of foraminiferal species in Dhordo core

Figure 7.5 Graphs showing down core variations of foraminiferal species in Dhordo core

Figure 7.6 Graphs showing down core variations of foraminiferal species in Berada core

Figure 7.7 Graphs showing down core variations of foraminiferal species in Berada core.

Figure 8.1 Down core variations in Al and other ‘Al normalized’ major elements from Dhordo core.

Figure 8.2 Downcore variations in N, C, C/N ratio and CaCO3 content in Dhordo core.

Figure 8.3 Trace element distribution (in ppm) in Dhordo core.

Figure 8.4 Down core variations in the major elements (Al normalized) in Bearada core.

Figure 8.5 Down core variations in the N, C, C/N ratio and CaCO3 content in Berada core.

Figure 8.6 Down core variations in the trace elements (Al normalized) in Berada core.

Figure 9.1 a) Down core variations in major Clay minerals (Smectite, Illite, Kaolinite and Chlorite), Illite Crystallinity, Illite Chemistry and (Sm+Ka)/(IIl+Ch) ratio. b) Downcore variations in environmentally sensitive clay mineral ratio proxies in Dhordo Core. The divisible zones and the overall timeframe of deposition also indicated.

Figure 9.2 a) Down Vvariations in major Clay minerals (Smectite, Illite, Kaolinite and Chlorite), Illite Crystallinity, Illite Chemistry and (Sm+Ka)/(IIl+Ch) ratio. b) Downcore variations in environmentally sensitive clay mineral ratio proxies in Berada Core. The divisible zones and the overall timeframe of deposition is also indicated.

Figure 9.3. Clay mineral characteristics of Indus river system from its flood plains, river mouth (delta) and shelf region compared with Great Rann basin, Kachchh. a) The Eastern Punjab (Pakistan) flood plains near Behwalpur region comprising Marot, Tilwalla cores and Fort Abbas and Derawar trenches in flood plains covering from ~49Ka to recent (Alizai et.al. 2012). b) The clay mineralogy of from the present day confluence of the eastern and western tributaries of Indus river that represents the older river sediments essentially of Himalayan origin but not necessarily of
river Nara (Alizai et al. 2012), Keti Bander core is from the Indus delta region near to the river mouth (Alizai et al. 2012) and Indus-23, Indus-10 core records are from north of Indus canyon and off Karachi (Pakistan) respectively (Limmer et al. 2012). C) Clay mineral data of rann sediments near Shakti bet (Tyagi et al. 2012) western great rann and present study i.e. Central and Marginal Great Rann of Kachchh basin.

Figure 9.4 Plots showing Illite crystallinity Vs Chemical weathering proxies for the individual time frames for Dhordo Core samples. (a) Smectite/(Illite+Chlorite) Vs Illite crystallinity, and (b) Kaolinite/(Illite+Chlorite) Vs Illite crystallinity. Note that the L. Pleistocene values are more sparsely arranged, L. Pleistocene to E. Holocene values shows lowered degree of Illite crystallinity with increased hydrolization processes; whereas; Mid-Late Holocene values are more or less indicating higher leaching and variable degree Illite crystallinity.

Figure 9.5 Plots showing Illite crystallinity Vs Chemical weathering proxies for the individual time frames for Dhordo Core samples. (a) Smectite/(Illite+Chlorite) Vs Illite crystallinity, and (b) Kaolinite/(Illite+Chlorite) Vs Illite crystallinity. Note that the E. Holocene values shows lowered degree of Illite crystallinity with increased hydrolization processes; Early-Mid Holocene values are more sparse and shows evidences of high-lower degree of hydrolization processes; whereas; Mid-Late Holocene values essentially shows higher order of leaching processes.

Figure 10.1 Map of Kachchh and adjoining regions showing multiple sediment sources.

Figure 10.2 Satellite image showing the course of palaeo Saraswati River. A, Delhi–Kalka Ridge; B, Delhi–Sargodha Ridge; C, Jaisalmer–Mari Arch. (after Mitra and Bhadu, 2012).

Figure 10.3 Scatter plot showing the distribution of $^{87}\text{Sr}/^{86}\text{Sr}$, εNd isotopic composition of the Arabian Sea (Clift et al. 2010; Kessarkar et al. 2003), Indus-Tsangpo suture zone, Tibetan Sedimentary Series, High Himalayan Crystallines and Lesser Himalaya (Tripathi et al. 2013 and references therein). Note that the Dhordo and Berada core samples show high radiogenic Sr values than the Arabian Sea and less radiogenic Nd.

Figure 10.4 Scatter plot showing the Sr-Nd isotopic composition of the Rann sediments from Dhordo and Berada cores with various potential end members. Note that the Thar Desert values are from 1.8-9.1ka B.P. old sediments; Ghaggar River 3.4ka B.P.; 0 to 28ka B.P. and Gularchy 3-11ka B.P.

Figure 10.5 Temporal scale variations in εNd values of Keti Bunder (Indus delta), Dhordo core (central rann basin) and Berada Core (marginal rann basin). Note that the Indus delta at its bottom to top varies with high to low radiogenic Nd (with stable values during most of the Holocene) whereas the rann samples as both locations shows opposite trend i.e. low radiogenic Nd at the bottom that changes into high radiogenic Nd upwards.

Figure 10.6 Temporal variations in $^{87}\text{Sr}/^{86}\text{Sr}$ and εNd in Dhordo core.

Figure 10.7 Temporal variations in $^{87}\text{Sr}/^{86}\text{Sr}$ and εNd in Berada core.