CONTENTS

CHAPTER I - General Introduction and Statement of the Problem

1.1 Introduction.

1.2 Term Definitions

 (a) Luminescence
 (b) Fluorescence and Phosphorescence
 (c) Phosphors
 (d) Centers and Traps
 (e) Luminescence efficiency

1.3 Theories of Luminescence

 I. Configurational Co-ordinate Model
 II. Continuous Di-electric Model
 III. Energy Band Model
 IV. Crystal Field Theory

1.4 The processes of Energy Transfer.

 I. System in which absorption and excitation takes place in localized center
 II. (a) System in which transfer of energy takes place without the movement of charge carriers
 (i) Cascade Mechanism
 (ii) Resonance Transfer
 (iii) Exciton Migration
 (b) System in which transfer of energy takes place with the movement of charge carriers
 (i) Schön-Klasen's Model
 (ii) Lambe-Klick's Model
 (iii) Donor-Acceptor Model

1.5 Detection of Traps

 (a) Growth and Decay of Luminescence
 (b) Thermoluminescence
(c) Optical Stimulation and Quenching
(d) Electroluminescence
(e) Photoconductivity
(f) Photo-dielectric Effect
(g) Electron Paramagnetic Resonance

1.6 Present Problem

References

CHAPTER II - Preparation of Phosphors

2.1 Introduction

2.2 Forms and Composition of Phosphors

(i) Forms
(ii) Composition

2.3 General Considerations

2.4 Preparation of Alkaline Earth Sulfide Phosphors

2.5 Present Method

(i) Purification of Ingredients
(ii) Preparation of Charge and Firing

Tables

References

CHAPTER III - Decay of Luminescence

3.1 Introduction

3.2 Decay Mechanisms

(a) Exponential Decay
(b) Power-law-decay
Chapter IV - Thermoluminescence

4.1 Introduction

4.2 Thermoluminescence Mechanism

4.3 Experimental Methods

4.4 Present Method

4.5 Results
(a) Glow Curves
(b) Trap Depth

Tables

References

CHAPTER V - Emission Spectra (Section A)

5.1 Introduction 91
5.2 Method of Studying Emission Spectra 92
5.3 Present Method 96

(a) Spectrograph
(b) Phosphor Holders
 (i) Fluorescence Assembly
 (ii) Phosphorescence Assembly

c) Exciting Source
d) Standard Spectrum
e) Photographic Plates and their processing

5.4 Intensity Measurements 99
5.5 Results (Fluorescence & Phosphorescence) Spectra 101

Tables 105

Section B - Emission Spectra at Low Temperature - V - Series

5.1 Introduction 107
5.2 Experimental Arrangement 103
5.3 Results 109

Tables 110
CHAPTER VI - Results and Discussion

6.1 Introduction
6.2 Phosphorescence Decay
6.3 Thermoluminescence
6.4 Emission Spectra

References

References
