The fact that the matter appears to be that, other things being the same, the principal requisite for success in "scientific research" is not the maturity of knowledge associated with age and experience, but the freshness of outlook which is natural attribute of youth.

Sir C. V. Raman
CONTENTS

PREFACE

ACKNOWLEDGEMENTS

CHAPTER 1

INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>MICROWAVE DIELECTRIC RESONATORS</td>
<td></td>
</tr>
<tr>
<td>1.2.1</td>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2</td>
<td>An Overview of Dielectric Resonator Research</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>PHYSICS OF DIELECTRIC RESONATORS</td>
<td>10</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Polarization Mechanisms in Dielectrics</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Clausius Mossotti Equation</td>
<td>11</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Working Principle of Dielectric Resonators</td>
<td>13</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Resonance</td>
<td>14</td>
</tr>
<tr>
<td>1.3.5</td>
<td>DR in a Circuit</td>
<td>16</td>
</tr>
<tr>
<td>1.3.6</td>
<td>Modes and Mode Nomenclature</td>
<td>17</td>
</tr>
<tr>
<td>1.4</td>
<td>TYPES OF DIELECTRIC RESONATORS</td>
<td>19</td>
</tr>
<tr>
<td>1.5</td>
<td>MATERIAL REQUIREMENTS FOR DR APPLICATIONS</td>
<td>20</td>
</tr>
<tr>
<td>1.5.1</td>
<td>High Relative Permittivity (ε_r)</td>
<td>20</td>
</tr>
<tr>
<td>1.5.2</td>
<td>High Quality Factor (Low Dielectric Loss)</td>
<td>21</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Small Temperature Coefficient of Resonant Frequency (τ_f)</td>
<td>23</td>
</tr>
<tr>
<td>1.6</td>
<td>FACTORS AFFECTING MICROWAVE DIELECTRIC PROPERTIES</td>
<td>24</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Effect of Humidity</td>
<td>25</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Effect of Porosity</td>
<td>26</td>
</tr>
<tr>
<td>1.7</td>
<td>APPLICATIONS OF DIELECTRIC RESONATORS</td>
<td>27</td>
</tr>
<tr>
<td>1.7.1</td>
<td>Dielectric Resonator Oscillators (DRO)</td>
<td>28</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Dielectric Resonator Antennas (DRA)</td>
<td>29</td>
</tr>
<tr>
<td>1.7.3</td>
<td>Dielectric Resonator Filters (DRF)</td>
<td>30</td>
</tr>
<tr>
<td>1.8</td>
<td>LOW TEMPERATURE COFIRED CERAMICS (LTCC)</td>
<td>31</td>
</tr>
<tr>
<td>1.8.1</td>
<td>Introduction</td>
<td>31</td>
</tr>
<tr>
<td>1.8.2</td>
<td>Brief Historical Review</td>
<td>33</td>
</tr>
</tbody>
</table>
1.9 MATERIAL SELECTION AND REQUIREMENTS FOR LTCC
1.9.1 Densification Temperature Less than 950°C
1.9.2 Dielectric Properties (ε_r, Q, f and τ)
1.9.3 High Thermal Conductivity
1.9.4 Thermal Expansion
1.9.5 Chemical Compatibility with Electrode Material

1.10 GLASS-CERAMIC COMPOSITES
1.10.1 Introduction
1.10.2 Characteristics of Glasses

1.11 POLYMER-CERAMIC COMPOSITES
1.11.1 Introduction
1.11.2 Material Requirements for Microelectronic Packaging and Substrate Applications
1.11.2.1 Electrical Properties
1.11.2.2 Thermal and Thermomechanical Properties
1.11.2.3 Mechanical Properties
1.11.2.4 Chemical Properties
1.11.3 Advantages of Polymer - Ceramic Composites

1.12 REFERENCES

CHAPTER 2
SYNTHESIS AND CHARACTERIZATION OF DIELECTRIC CERAMICS

2.1 SYNTHESIS OF DIELECTRIC RESONATORS
2.1.1 Introduction
2.1.2 Solid State Synthesis of Ceramics
2.1.2.1 Powder Preparation
2.1.2.1.1 Select Appropriate Starting Materials
2.1.2.1.2 Weighing of Raw Materials
2.1.2.1.3 Stoichiometric Mixing
2.1.2.2 Calcination
2.1.2.3 Green Body Preparation
2.1.2.3.1 Grinding
2.1.2.3.2 Addition of Polymeric Binder
2.1.2.3.3 Powder Compaction
2.1.2.4 Sintering
2.1.2.4.1 Solid State Sintering 64
2.1.2.4.2 Liquid Phase Sintering (LPS) 66

2.2 SYNTHESIS OF POLYMER-CERAMIC COMPOSITES 68
2.2.1 Powder Processing Method 68
2.2.2 Sigma Blend Method 68

2.3 STRUCTURAL AND MICROSTRUCTURAL CHARACTERIZATION OF DIELECTRIC RESONATORS 69
2.3.1 X-Ray Diffraction 69
2.3.2 Scanning Electron Microscopy 70
2.3.2.1 Energy Dispersive X-ray Analyzer (EDXA) 71

2.4 MICROWAVE CHARACTERIZATION OF DIELECTRIC MATERIALS 72
2.4.1 Introduction 72
2.4.1.1 Whispering Gallery Mode Resonators 74
2.4.1.2 Split-Post Dielectric Resonator Method 75
2.4.2 Network Analyzer 77
2.4.3 Measurement of Relative Permittivity (ε_r) 78
2.4.4 Measurement of Unloaded Quality Factor (Q_u) 81
2.4.5 Measurement of Temperature Coefficient of Resonant Frequency (τ_f) 83
2.4.6 Cavity Perturbation Method 84
2.4.7 Radio Frequency Dielectric Measurements 86
2.4.8 Error Calculations in Dielectric Property Measurements 86

2.5 THERMAL CHARACTERIZATION 87
2.5.1 Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) 88
2.5.2 Differential Scanning Calorimetry (DSC) 88
2.5.3 Thermo Mechanical Analysis (TMA) 88
2.5.4 Photopyroelectric Technique 89

2.6 REFERENCES 90

CHAPTER 3
CeO$_2$-AO-TiO$_2$ ($A = Ca, Mg, Zn, Mn, Co, Ni, W$) CERAMICS: SYNTHESIS, CHARACTERIZATION AND MICROWAVE DIELECTRIC PROPERTIES

3.1 CERIUM DIOXIDE 96
3.1.1 Introduction 96
3.1.2 Fluorite Structure

3.2 MILESTONES IN THE RESEARCH OF CeO₂ CERAMICS

3.3 MICROWAVE DIELECTRIC PROPERTIES OF CeO₂-AO-TiO₂
(A= Ca, Mg, Zn, Mn, Co, Ni, W) CERAMICS

3.3.1 Introduction
3.3.2 Experimental
3.3.3 Structural Analysis and Microwave Measurements
3.3.4 Optimization of Calcination and Sintering Temperatures
3.3.5 Results and Discussion
 3.3.5.1 Phase and Microstructural Analysis
 3.3.5.2 Microwave Dielectric Properties

3.4 EFFECT OF DOPANTS IN CeO₂-AO-TiO₂ (A = Ca, Mg, Zn, Mn, Co, Ni, W) CERAMICS

3.4.1 Introduction
3.4.2 Experimental
3.4.3 Results and Discussion

3.5 SYNTHESIS, CHARACTERIZATION AND MICROWAVE DIELECTRIC PROPERTIES OF ATiO₃ (A = Co, Mn, Ni) CERAMICS

3.5.1 Introduction
3.5.2 Experimental
3.5.3 Results and Discussion
 3.5.3.1 Phase and Microstructural Analysis
 3.5.3.2 Microwave Dielectric Properties

3.6 CONCLUSIONS

3.7 REFERENCES

CHAPTER 4
MICROWAVE DIELECTRIC PROPERTIES OF BaO-CeO₂-TiO₂ CERAMICS

4.1 SYNTHESIS, CHARACTERIZATION AND MICROWAVE DIELECTRIC PROPERTIES OF BaO-CeO₂-TiO₂ CERAMICS

4.1.1 Introduction
4.1.2 Experimental
4.1.3 Results and Discussion
 4.1.3.1 Characterization and Microwave Dielectric Properties of BaO-2CeO₂-nTiO₂ (n = 6......15) Ceramics
 4.1.3.2 Characterization and Microwave Dielectric properties
4.2 EFFECT OF DOPANTS ON THE MICROWAVE DIELECTRIC PROPERTIES OF BaO-3CeO$_2$-4TiO$_2$ CERAMIC

4.2.1 Experimental

4.2.2 Results and Discussion

4.2.2.1 Phase and Microstructural Analysis

4.2.2.2 Microwave Dielectric properties

4.3 SYNTHESIS, CHARACTERIZATION AND MICROWAVE DIELECTRIC PROPERTIES OF (1-x)CeO$_2$-xBaTi$_4$O$_9$ (0 \leq x \leq 1) CERAMICS

4.3.1 Introduction

4.3.2 Experimental

4.3.3 Results and Discussion

4.3.3.1 Phase and Microstructural Analysis

4.3.3.2 Microwave Dielectric Properties

4.4 LOW TEMPERATURE SINTERING AND MICROWAVE DIELECTRIC PROPERTIES OF 0.5CeO$_2$-0.5BaTi$_4$O$_9$ CERAMICS

4.4.1 Introduction

4.4.2 Experimental

4.4.3 Results and Discussion

4.4.3.1 Phase Analysis

4.4.3.2 Microstructural Analysis

4.4.3.3 Microwave Dielectric Properties

4.5 CONCLUSIONS

4.6 REFERENCES

CHAPTER 5
LOW TEMPERATURE SINTERING AND MICROWAVE DIELECTRIC PROPERTIES OF Ce$_2$(WO$_4$)$_3$ AND Ba$_2$CeV$_3$O$_{11}$ CERAMICS

5.1 SYNTHESIS, CHARACTERIZATION AND MICROWAVE DIELECTRIC PROPERTIES OF TWO NOVEL DIELECTRIC CERAMICS

5.1.1 Introduction

5.1.2 Experimental

5.1.3 Results and Discussion

5.1.3.1 Phase and Microstructural Analysis

5.1.3.2 Microwave Dielectric Properties
5.2 LOW TEMPERATURE SINTERING AND MICROWAVE DIELECTRIC PROPERTIES OF Ba₂CeV₃O₁₁ AND Ce₂(WO₄)₃ CERAMICS
5.2.1 Introduction
5.2.2 Experimental
5.2.3 Results and Discussion
5.2.3.1 Density and Microstructural Analysis
5.2.3.2 Microwave Dielectric Properties
5.3 CONCLUSIONS
5.4 REFERENCES

CHAPTER 6
MICROWAVE DIELECTRIC PROPERTIES OF CeₓRE₁₋ₓO₂₋₆ (RE = La, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb and Y), 0≤x≤1 CERAMICS

6.1 INTRODUCTION
6.2 EXPERIMENTAL
6.3 RESULTS AND DISCUSSION
6.3.1 Phase Analysis
6.3.2 Microstructural Analysis
6.3.3 Microwave Dielectric Properties
6.4 CONCLUSIONS
6.5 REFERENCES

CHAPTER 7
CERIA BASED COMPOSITES FOR ELECTRONIC PACKAGING AND SUBSTRATE APPLICATIONS

7.1 CERIA-GLASS COMPOSITES FOR LOW TEMPERATURE COFIRED CERAMIC APPLICATIONS
7.1.1 Introduction
7.1.2 Experimental
7.1.3 Results and Discussion
7.1.3.1 Sintering of Glass Fluxed Ceria
7.1.3.2 Phase Analysis
7.1.3.3 Microstructural Analysis
CHAPTER 7
POLYMER-CERIA COMPOSITES FOR MICROWAVE SUBSTRATE APPLICATIONS

7.2.1 Introduction 230
7.2.2 Experimental 233
7.2.3 Theoretical Modeling 235
7.2.4 Results and Discussion 239
 7.2.4.1 Densification and Microstructural Analysis 239
 7.2.4.2 Thermal Analysis 243
 7.2.4.3 Dielectric Properties 247

CHAPTER 7.3
CERIA-La$_{0.5}$Sr$_{0.5}$CoO$_{3-\delta}$ COMPOSITES FOR GIANT PERMITTIVITY APPLICATIONS

7.3.1 Introduction 258
7.3.2 Experimental 259
7.3.3 Results and Discussion 260
 7.3.3.1 Densification of CeO$_2$-LSCO Composites 260
 7.3.3.2 Phase and Microstructural Analysis 261
 7.3.3.3 Dielectric Properties 263

CHAPTER 7.4
CONCLUSIONS 267

CHAPTER 7.5
REFERENCES 270

CHAPTER 8
CONCLUSIONS AND FUTURE CHALLENGES 281

LIST OF PATENTS AND PUBLICATIONS 290