FIGURE CAPTIONS

1.1 Political map of Kerala
1.2 Terrain of Kerala as taken form satellite data
1.3 Seasonal variation of mean sea level pressure in Kerala
1.4 Seasonal variation of mean temperature in Kerala
1.5 Temperature at various pressure levels for July for Thiruvananthapuram, (b) Kozhikode and (c) Mangalore
1.6 U-wind at various pressure levels for July for Thiruvananthapuram, (b) Kozhikode and (c) Mangalore
1.7 District-wise distribution of Annual Rainfall
1.8 Pentad Rainfall for as given in Ananthakrishnan et al. (1971) (a) Trivandrum (b) Allepey (c) Cochin (d) Palghat (e) Kozhikode (f) Mangalore (g) Mercara (h) Aminidivi (i) Minicoy
1.9 Month-wise distribution of rainfall during southwest monsoon season for north and south Kerala
1.10 Dates of Monsoon Onset over Kerala and the 7-year moving average
1.11a Monthly rainfall distribution for south Kerala
1.11b Monthly rainfall distribution for north Kerala
1.12 Areas with monsoon circulation according to Ramage, 1971
1.13a Surface winds during northern hemispheric winter monsoon (Webster, 1987)
1.13b Surface winds during northern hemispheric summer monsoon (Webster, 1987)
1.14.1 Schematic diagram of the elements of the monsoon system (Krishnamurti and Balme, 1976)
1.15 Mean sea-level pressure for July (Krishnamurti and Bhalme, 1976)
1.16 Low Level Jetstream on an active monsoon day (Joseph and Raman, 1966)
1.17a Axis of Low-level Jet and the associated active areas of convection (OLR) during onset of southwest monsoon as taken from Joseph and Sijikumar (2004)

1.17b Axis of Low-level Jet and the associated active areas of convection (OLR) during active spells of southwest monsoon as taken from Joseph and Sijikumar (2004)

1.17c Axis of Low-level Jet and the associated active areas of convection (OLR) during break spells of southwest monsoon as taken from Joseph and Sijikumar (2004)

1.18 Vertical structure of a typical thunderstorm (cumulonimbus)

2.1 The raingauge net-work of Kerala for the period 1901-1980

2.2 The raingauge net-work of Kerala for the period 1981-1996

2.3 Schematic illustration of the main components of the NCEP/NCAR Reanalysis system (NNC has changed to NCEP) (Kalnay et al, 1996)

2.4 The MM5 modeling system flow chart

2.5 Schematic representation of the vertical structure of the model. Dashed lines denotes half-sigma levels, solid lines denote full-sigma levels

2.6 Schematic representation showing the horizontal Arakawa B-grid staggering of the dot and cross grid points. The smaller inner box is a representative mesh staggering for a 3:1 coarse-grid distance to fine-grid distance ratio

3.1 NCEP SST anomaly composites of years during 1965-1993 with ISO periods significant at 99%. (a) Five years with LONG period (b) Twelve years with SHORT period as given in Table 3.3. Isolines are drawn at intervals of 0.2°C

3.2 (a) Daily average rainfall of south Kerala for 1987 along with the 7-day moving average; (b) Wavelet analysis of south Kerala rainfall for 1987;

3.3 NCEP SST anomaly of the monsoon season June to September for (a) 1987 (b) 1989 (c) 1961. Isoline intervals are 0.2°C
3.4 (a) Daily average rainfall of south Kerala for 1989 along with the 7-day moving average; (b) Wavelet analysis of south Kerala rainfall for 1989

3.5 (a) Daily average rainfall of south Kerala for 1961 along with the 7-day moving average; (b) Wavelet analysis of south Kerala rainfall for 1961

3.6 The daily rainfalls of (a) south Kerala; (b) north Kerala; (c) whole of India during the monsoon of 1987. The seven-day moving average is also plotted.

3.7 Hovmuller diagrams of (a) OLR; (b) zonal wind of 850 hPa averaged over the longitudes 70E-80E for 1987

3.8 Hovmuller diagrams of OLR over the longitudes 70E-80E for 2002.

4.1 All-India Summer Monsoon Rainfall 1871-2003

4.2 Kerala Summer Monsoon Rainfall 1901-1996

4.3 Summer Monsoon Rainfall for south Kerala 1901-1996

4.4 Percentage change in rainfall from 1901-1940 to 1941-1980 from Soman et al. (1988)

4.5a Annual Rainfall in cms for Alleppey for the period 1916-2003.

4.5b Annual Rainfall in cms for Kottayam for the period 1901-2003

4.5c Annual Rainfall in cms for Peermade for the period 1901-2003

4.6 Summer Monsoon Rainfall for north Kerala 1901-1996

4.7 Number of days during monsoon season 01June to 30September with (a) daily south Kerala rainfall ≥ 15mm/day (b) daily north Kerala rainfall ≥ 20mm/day (c) daily south Kerala rainfall less than or equal to 7.5 mm/day. (d) daily north Kerala rainfall less than or equal to 7.5 mm/day. Linear trend line is marked.

5.1 Non-El Niño conditions

5.2 El Niño conditions

5.3a 21-year sliding correlation between KSMR and SOI of Pre-SON

5.3b 21-year sliding correlation between KSMR and SOI of Pre-DJF

5.3c 21-year sliding correlation between KSMR and SOI of Con-MAM

5.3d 21-year sliding correlation between KSMR and SOI Con-JJA

226
5.4 Location of the 500-mb ridge during the months of January, April, July
and October taken from (Shukla and Mooley, 1987).
5.5a 30-year sliding correlation between 500mb ridge and ISMR
5.5b 30-year sliding correlation between 500mb ridge and KSMR (c)
5.6 Correlation between QBO Zonal wind index and KSMR
5.7 Correlation map between 850hPa zonal wind of May and KSMR
5.8 Correlation map between Outgoing Longwave radiation (OLR) of May
and KSMR
5.9 Correlation map between Vertically Integrated Moisture (VIM) of May
and KSMR
5.10 Correlations maps of KSMR and (a) Pre.JJA; (b)Pre.SON (c)Pre. DJF;
(d)Con.MAM; (e)Con.JJA.
5.11 Correlations maps of KSMR and 2m-temperature for the period (a) 1950-
2003; (b)1950-1976 (c)1977-2003
5.12 21-year sliding correlation between Eurasian SCE and KSMR
5.13 Correlation map between 200hPa meridional wind of May and KSMR
5.14 Correlation map between 50hPa zonal wind of winter (mean of January +
Februnary) and KSMR
5.15 Actual and Estimated values of rainfall using the multiple regression
equation
5.16 Actual and Estimated values of rainfall using the multiple regression
equation using Vorticity factor
6.1 The hourly variation of rainfall for the season at Cochin taken from Rajan
et al. (1981)
6.2 Station location used for the study. The station numbers are given as in
Table 6.2
6.3 24-hour rainfall of Kakkadavu and Vynthala along with the first
harmonic, 1+2 harmonic (sum) and 1+2+3 harmonic (sum). The left
panel is for total rainfall days and right panel for days with rainfall ≥5cm
per day.
6.4 24-hour rainfall of Thikkodi along with the first harmonic, 1+2 harmonic (sum) and 1+2+3 harmonic (sum). The left panel is for total rainfall days and right panel for days with rainfall ≥5cm per day.

6.5 24-hour rainfall Kaithprem and Elanad with the first harmonic, 1+2 harmonic (sum) and 1+2+3 harmonic (sum). The left panel is for total rainfall days and right panel for days with rainfall ≥5cm per day.

6.6 24-hour rainfall Palapuzha and Vazhavatta with the first harmonic, 1+2 harmonic (sum) and 1+2+3 harmonic (sum). The left panel is for total rainfall days and right panel for days with rainfall ≥5cm per day.

6.7.1 24-hour rainfall of Cheruvanchery with the first harmonic, 1+2 harmonic (sum) and 1+2+3 harmonic (sum) for total rainfall days.

7.1 Sarker's (1967) model of orography of Western Ghats. The solid line is the observed rainfall and the dashed lines are the simulated rain from two models.

7.2 (a) Contours of the terrain in Sri Lanka (b) Contours of mean summer monsoon rainfall May to September. As taken from Lariff (1999)

7.3 (a) Vertical section of the height contours along the section marked XX – XX in fig. 7.2(a) and the smoothed contours used in the modelling study; (b) Variation along the section XX-XX in fig. 7.2(a) of the May to September rainfall. As taken from Lariff (1999)

7.4 The rainfall simulation and the orography. The solid line is the terrain and the dashed line the simulated rainfall. The figure is taken from Lariff (1999)

7.5 (a) Spatial distribution of the mean rainfall for July for the period 1901-1950.; (b) the satellite measured terrain of Kerala

7.6 Longitudinal cross section of rainfall and height of the terrain of latitude averaged for (a) 10-10.2°N (b) 9.5 –9.7°N. The stations are plotted as open circle.

7.7 The three nested domains chosen for the study.
7.8 U-wind at 850hPa (1.5km) for 1200Z of (a) 8July 1995 (b) 9 July 1995 (c) 10July 1995 (d) 18July 1995 (e) 19 July 1995 (f) 20 July 1995

7.9 U-Wind (850hPa) averaged 7.5-12.5N, 75 –77.5E

7.10 (a) The terrain output of the innermost domain obtained from MM5 simulation. Spatial distribution of convective rainfall in the innermost domain on (b) 9th July 1995 (c) 10th July 1995 and (d) 11th July 1995.

7.11 (a) The terrain of the Munnar cross-section (averaged for 10-10.2N) obtained from MM5 simulation. Convective rainfall in this cross-section on (b) 9th July 1995 (c) 10th July 1995 and (d) 11th July 1995.

7.12 (a) The terrain of the Peermade cross-section (averaged for 10-10.2N) obtained from MM5 simulation. Convective rainfall in this cross-section on (b) 9th July 1995 (c) 10th July 1995 and (d) 11th July 1995.

7.13 (a) The terrain output of the innermost domain obtained from MM5 simulation. Spatial distribution of convective rainfall in the innermost domain on (b) 19th July 1995 (c) 20th July 1995 and (d) 21st July 1995.

7.14 (a) The terrain of the Munnar cross-section (averaged for 10-10.2N) obtained from MM5 simulation. Convective rainfall in this cross-section on (b) 19th July 1995 (c) 20th July 1995 and (d) 21st July 1995.

7.15 (a) The terrain of the Peermade cross-section (averaged for 10-10.2N) obtained from MM5 simulation. Convective rainfall in this cross-section on (b) 19th July 1995 (c) 20th July 1995 and (d) 21st July 1995.

7.16 Spatial distribution of convective rainfall in Domain-2 on (a) 11th July 1995 (b) (d) 20th July 1995

7.17 Convective rainfall in the Munnar cross-section from Domain-2 on (a) 11th July 1995 (b) 20th July 1995