INDEX

Chapter: 1 General Introduction 1-38

1.1 Introduction
1.2 Explosives
1.3 History and development of explosives
1.4 Classification of explosives
 1.4.1 Based upon velocity
 1.4.2 Based upon sensitivity
 1.4.3 Based upon priming composition
 1.4.4 Based upon physical form
 1.4.5 Based upon applications
1.5 Explosives as environmental pollutants
1.6 Environmental fate and toxicity of explosives
 1.6.1 Environmental fate and toxicity of RDX
 1.6.2 Environmental fate and toxicity of HMX
 1.6.3 Environmental fate and toxicity of TNT
 1.6.4 Environmental fate and toxicity of Tetryl
 1.6.5 Environmental fate and toxicity of nitrobenzene, 1,3-DNB and 1,3,5-TNB
 1.6.6 Environmental fate and toxicity of dinitrotoluene isomers
 1.6.7 Environmental fate and toxicity of nitrotoluene isomers
1.7 Terrorism
1.8 Methods for soil decontamination
 1.8.1 Incineration
 1.8.2 Composting
 1.8.3 Soil washing

References

Chapter: 2 Instrumentation and Analytical Parameters 39-73

2.1 Problems in explosives detection
 2.1 Aqueous matrices
 2.2 Solid matrices
 2.3 Gaseous matrices
2.2 Introduction to HPLC
 2.2.1 Principle of HPLC
 2.2.2 Types of liquid chromatography
 2.2.3 Instrumentation
2.3 Chromatographic analysis parameters
 2.3.1 Retention factor (κ)
 2.3.2 Separation factor (α)
 2.3.3 Efficiency factor (N)
 2.3.4 Resolution equation (R_s)
2.4 Sample preparation
 2.4.1 Introduction to SPME
 2.4.2 Design of SPME
 2.4.3 Principle of SPME
 2.4.4 Working with SPME
 2.4.5 Fiber conditioning
 2.4.6 Hyphenation of SPME with HPLC
 2.4.7 Extraction efficiency enhancement parameters
2.5 SPME for explosives

References
Chapter: 3 Review of Literature
3.1 HPLC methods for the analysis of organic explosives
 3.1.1 HPLC-UV methods
 3.1.2 HPLC-PDAD methods
 3.1.3 HPLC-MS methods
 3.1.4 HPLC-Electrochemical detection
 3.1.5 HPLC-NMR methods
 3.1.6 HPLC-Post column derivatization methods
 3.1.7 HPLC-TEA methods
3.2 Preconcentration methods
3.3 SPME-HPLC methods for analysis of explosives
3.4 Conclusion
3.5 Plan of work

References

Chapter: 4 Enhanced Extraction of HMX and RDX in the Presence of Sodium Dodecyl Sulphate and its Application to Environmental Samples
4.1 Introduction
4.2 Experimental
4.3 Procedure
 4.3.1 Optimization of separation conditions
 4.3.2 Application to surface soil sample
 4.3.3 Application to ground water sample
4.4 Results and discussion
4.5 Conclusion

References

Chapter: 5 Solid Phase Microextraction-High Performance Liquid Chromatographic Determination of HMX and RDX in the Presence of Sodium Dodecyl Sulphate Surfactant
5.1 Introduction
5.2 Experimental
5.3 SPME-HPLC determination of HMX and RDX
 5.3.1 General procedure
 5.3.2 Optimization of chromatographic conditions
5.4 Evaluation of the effect of addition of SDS in aqueous matrix with SPME/HPLC-UV
 5.4.1 Effect of addition of SDS in absence of salt
 5.4.2 Optimization of concentration of SDS in absence of salt
 5.4.3 Effect of addition of SDS in the presence of salt
 5.4.4 Effect of neutral surfactant
5.5 Results and discussion
 5.5.1 Optimization of extraction conditions on SPME in presence of 0.5 mM SDS
 5.5.2 Preparation of SPME/HPLC calibration curves
5.6 Applications
5.7 Conclusion

References
Chapter 6: Development of SPME-HPLC-UV Method for the Analysis of TNT and its Metabolites on Reverse Phase Amide Column and Application to Analysis of Aqueous Samples (201-226)

6.1 Introduction
6.2 Experimental
6.3 Sample preparation
 6.3.1 Industrial wastewater and river water
 6.3.2 Ground water and drinking water
6.4 Procedure
 6.4.1 SPME procedure for sample extraction
 6.4.2 Fiber conditioning
6.5 Results and discussion
6.6 Applications
6.7 Conclusion

References

Summary (227-232)

List of Publications