CHAPTER 1: INTRODUCTION

1.1. Toxic metals and their toxicity in water
 1.1.1. Toxic metals
 1.1.2. Toxicity
 1.1.3. Fundamentals of poisoning mechanism

1.2. Toxicity caused by presence of arsenic in water
 1.2.1. Introduction
 1.2.2. Sources responsible for water contamination with arsenic
 1.2.3. Redox potential and pH control of arsenic speciation
 1.2.4. Arsenic cycle
 1.2.5. Manifestations of arsenic intoxications
 1.2.6. Arsenic metabolism and poisoning
 1.2.7. Mechanism of action
 1.2.8. World scenario of arsenic poisoning

1.3. Toxicity caused by presence of antimony in water
 1.3.1. Introduction
 1.3.2. Sources responsible for water contamination with antimony
 1.3.3. Redox potential and pH control of antimony speciation
 1.3.4. Antimony cycle
 1.3.5. Manifestations of antimony intoxications
 1.3.6. Antimony metabolism and poisoning
 1.3.7. World scenario of antimony poisoning

1.4. Toxicity caused by presence of vanadium in water
 1.4.1. Introduction
 1.4.2. Sources responsible for water contamination with vanadium
 1.4.3. Manifestations of vanadium intoxications
 1.4.4. Vanadium metabolism and poisoning
 1.4.5. World scenario of vanadium poisoning

1.5. Existing methodologies for the removal of toxic metals
 1.5.1. Oxidation
 1.5.2. Coagulation-filtration
 1.5.3. Ion exchange
 1.5.4. Membrane processes
 1.5.5. Alternative processes
 1.5.6. Adsorption

1.6. Research drive

References
CHAPTER 2: ANALYTICAL TECHNIQUES UTILIZED IN THE PRESENT WORK 49-66

2.1. Introduction 49
2.2. X-Ray Diffractrometry 49-51
2.3. Thermal Method of Analysis 52-53
2.4. Fourier Transform-Infrared-Attenuated Total Reflectance Spectrometry 53-56
2.5. UV-Visible Spectrometry 57-58
2.7. Transmission Electron Microscopy 59-61
2.8. Specific surface area by BET method 61-62
2.9. Zetametry 62-64

CHAPTER 3: SYNTHESIS OF ADSORBENTS 67-93

3.1. Materials and methods 67
3.2. Methodology for synthesis of modified Montmorillonite, MMT-1 67-68
3.3. Methodology for synthesis of modified Montmorillonite, MMT-2 68
3.4. Methodology for synthesis of modified Montmorillonite, MMT-3 69
3.5. Methodology for synthesis of Chitosan beads, CHITO –B 69-70
3.6. Methodology for synthesis of Chitosan Montmorillonite beads, MMT-4 70-71
3.7. Methodology for synthesis of modified Montmorillonite, MMT-5 71-72
3.8. Characterization of the adsorbents 72-91
3.9. Conclusions 92

CHAPTER 4: EFFECT OF ADSORBENTS ON ARSENIC (III) EXTRACTION 94-189

4.1. Introduction 94-95
4.2. Current literature survey 95-131
 4.2.1. Adsorptive extraction of arsenic (III)
4.3. Experimental 131-133
 4.3.1. Materials and methods
 4.3.2. Spectrophotometric technique for the determination of arsenic (III)
4.4. Adsorptive extraction of arsenic (III) 133-161
 4.4.1. Adsorptive behavior on Montmorillonite, MMT
 4.4.2. Adsorptive behavior on modified Montmorillonite, MMT-1
 4.4.3. Adsorptive behavior on modified Montmorillonite, MMT-2
 4.4.4. Adsorptive behavior on modified Montmorillonite, MMT-3
 4.4.5. Adsorptive behavior on Chitosan beads, CHITO - B
 4.4.6. Adsorptive behavior on Chitosan - Montmorillonite beads, MMT-4
 4.4.7. Adsorptive behavior on modified Montmorillonite, MMT-5
4.5. **Results and Discussion** 162-177
 4.5.1. X-Ray Diffractometry
 4.5.2. Fourier Transform -Infrared-Attenuated Total Reflectance Spectrometry
 4.5.3. Thermogravimetry (TGA-DTA)
 4.5.4. Scanning Electron Microscopy
 4.5.5. Transmission Electron Microscopy

4.6. **Kinetic studies of arsenic (III) adsorption** 178-185

4.7. **Conclusions** 186-188

CHAPTER 5: **EFFECT OF ADSORBENTS ON ANTIMONY (III) EXTRACTION** 190-262

5.1. **Introduction** 190-191
5.2. **Current literature survey** 191-203
 5.2.1. Adsorptive extraction of antimony (III)
5.3. **Experimental** 203-205
 5.3.1. Materials and methods
 5.3.2. Spectrophotometric technique for the determination of antimony (III)
5.4. **Adsorptive extraction of antimony (III)** 205-235
 5.4.1. Adsorptive behavior on Montmorillonite
 5.4.2. Adsorptive behavior on modified Montmorillonite, MMT-1
 5.4.3. Adsorptive behavior on modified Montmorillonite, MMT-2
 5.4.4. Adsorptive behavior on modified Montmorillonite, MMT-3
 5.4.5. Adsorptive behavior on Chitosan beads, CHITO - B
 5.4.6. Adsorptive behavior on modified Montmorillonite, MMT-4
 5.4.7. Adsorptive behavior on modified Montmorillonite, MMT-5
5.5. **Results and Discussion** 236-250
 5.5.1. X-Ray Diffractometry
 5.5.2. Fourier Transform Infra-red-Attenuated Total Reflectance Spectrometry
 5.5.3. Thermogravimetry (TGA-DTA)
 5.5.4. Scanning Electron Microscopy
 5.5.5. Transmission Electron Microscopy
5.6. **Kinetic studies of antimony (III) adsorption** 251-259
5.7. **Conclusions** 260-261

CHAPTER 6: **EFFECT OF ADSORBENTS ON VANADIUM (V) EXTRACTION** 263-332

6.1. **Introduction** 263-264
6.2. **Current literature survey** 265-274
 6.2.1. Adsorptive extraction of vanadium (V)
6.3. **Experimental** 274-276
 6.3.1. Materials and methods
 6.3.2. Spectrophotometric technique for the determination of vanadium (V)
6.4. **Adsorptive extraction of vanadium (V)** 276-305
 6.4.1. Adsorptive behavior on Montmorillonite
 6.4.2. Adsorptive behavior on modified Montmorillonite, MMT-1
 6.4.3. Adsorptive behavior on modified Montmorillonite, MMT-2
CONTENTS

6.4.4. Adsorptive behavior on modified Montmorillonite, MMT-3
6.4.5. Adsorptive behavior on Chitosan beads, CHITO - B
6.4.6. Adsorptive behavior on modified Montmorillonite, MMT-4
6.4.7. Adsorptive behavior on modified Montmorillonite, MMT-5

6.5. **Results and Discussion** 306-319
6.5.1. X-Ray Diffractometry
6.5.2. Fourier Transform- Infrared-Attenuated Total Reflectance Spectrometry
6.5.3. Thermogravimetry (TGA-DTA)
6.5.4. Scanning Electron Microscopy
6.5.5. Transmission Electron Microscopy

6.6. Kinetic studies of vanadium (V) adsorption 320-329
6.7. Conclusions 330-331

CHAPTER 7: **COMPARISON OF ADSORPTIVE BEHAVIOR OF METAL IONS** 333-347

7.1. Introduction 333-334
7.2. Adsorptive behavior of metal ions on MMT 334-335
7.3. Adsorptive behavior of metal ions on MMT-1 336-337
7.4. Adsorptive behavior of metal ions on MMT-2 337-338
7.5. Adsorptive behavior of metal ions on MMT-3 338-339
7.6. Adsorptive behavior of metal ions on CHITO-B 340
7.7. Adsorptive behavior of metal ions on MMT-4 341-342
7.8. Adsorptive behavior of metal ions on MMT-5 342-343
7.9. Conclusions 343-346

CHAPTER 8: **REUSABILITY OF ADSORBENTS** 348-379

8.1. Introduction 348-349
8.2. Experimental 350-351
8.2.2. Spectrophotometric methodology for the determination of metal ion/s
8.3. Reusability of adsorbents after desorption of arsenic (III) 351-360
8.4. Reusability of adsorbents after desorption of antimony (III) 360-368
8.5. Reusability of adsorbents after desorption of vanadium (V) 368-376
8.6. Conclusions 377-378

CHAPTER 9: **SUMMARY** 380-390

CHAPTER 10: **FUTURE PROSPECTS** 391

Publications in Refereed/Peer Reviewed Journals

- Paper/s Published in International/National Journal/Proceedings
- Paper/s in process for publication

Papers/Posters Presented at Seminar/ Conference/s

Conferences/Workshops Attended