COMMON FIXED POINT THEOREMS FOR
FOUR MAPPINGS SATISFYING A RATIONAL
INEQUALITY
CHAPTER V

COMMON FIXED POINT THEOREMS FOR FOUR MAPPINGS
SATISFYING A RATIONAL INEQUALITY

5.1 The following fixed point theorem was proved by Ahmad and Imdad[1].

THEOREM A. Let (S, T) and (T, J) be two weakly commuting pairs of mappings of a complete metric space (X, d) into itself such that

(5.1.1) \(T(X) \subseteq I(X), \ S(X) \subseteq J(X); \)

and for all \(x, y \in X \) either

\[
\frac{a\left(\{d(Sx, Ix)\}^2 + \{d(Ty, Jy)\}^2\right)}{d(Sx, Ix) + d(Ty, Jy)} + bd(Ix, Jy)
\]

(5.1.2) \(d(Sx, Ty) \leq \frac{a\left(\{d(Sx, Ix)\}^2 + \{d(Ty, Jy)\}^2\right)}{d(Sx, Ix) + d(Ty, Jy)} + bd(Ix, Jy) \)

If \(d(Sx, Ix) + d(Ty, Jy) \neq 0 \) where \(a, b > 0, a + b < 1, \)

or

(5.1.3) \(d(Sx, Ty) = 0 \) if \(d(Sx, Ix) + d(Ty, Jy) = 0. \)

If one of S, T, I or J is continuous, then S, T, I and J have a unique common fixed point \(z \). Further, \(z \) is the unique common fixed point of \(S \) and \(I \) and of \(T \) and \(J \).
Extending Theorem A, we now prove the following:

Theorem 1. Let \(\{S, T\} \) and \(\{T, J\} \) be two weakly commuting pairs of mappings of a complete metric space \((X, d)\) satisfying the conditions (5.1.1), (5.1.3) and the following:

\[
(5.1.4) \quad d(Sx, Ty) \leq \frac{\alpha [\{d(Sx, Ix)\}^2 + \{d(Ty, Jy)\}^2]}{d(Sx, Ix) + d(Ty, Jy)}
\]

\[
+ \frac{\beta [1 + d(Jy, Ty)] d(Sx, Ix) + \gamma d(Ix, Jy)}{1 + d(Ix, Jy)}
\]

If \(d(Sx, Ix) + d(Ty, Jy) \neq 0 \) where \(\alpha, \beta, \gamma > 0, \alpha + \beta + \gamma < 1 \),
or,

\[
(5.1.5) \quad d(Sx, Ty) = 0 \quad \text{if} \quad d(Sx, Ix) + d(Ty, Jy) = 0
\]

If one of \(S, T, I \) or \(J \) is continuous then \(S, T, I, \) and \(J \) have a unique common fixed point \(z \). Further, \(z \) is the unique common fixed point of \(S \) and \(I \) and of \(T \) and \(J \).

Proof Let \(x_0 \) be an arbitrary point in \(X \). As \(S(X) \) is contained in \(J(X) \),
we can choose a point x_1 in X such that $S_{x_1} = Jx_1$. Since $T(X)$ is also contained in $I(X)$, we can choose a point x_2 in X such that $Tx_1 = Ix_2$. In this way, we can choose $x_{2n}, x_{2n+1}, x_{2n+2}$ such that $Sx_{2n} = Jx_{2n+1}$ and $Tx_{2n+1} = Ix_{2n+2}$ for $n = 0, 1, 2, \ldots$.

Let us denote $U_{2n} = d(Sx_{2n}, Tx_{2n+1})$ and $U_{2n+1} = d(Tx_{2n+1}, Sx_{2n+2})$.

We distinguish two cases:

Case 1. Suppose $U_{2n} + U_{2n+1} \neq 0$ for $n = 0, 1, 2 \ldots$,

then on using inequality (7.1.4), we get

$$U_{2n+1} \leq \frac{\alpha \{(U_{2n})^2 + (U_{2n+1})^2\}}{U_{2n} + U_{2n+1}} + \beta U_{2n+1} + \gamma U_{2n},$$

(5.1.6)

So that

$$(1 - \alpha - \beta) U_{2n+1}^2 + (1 - \beta - \gamma) U_{2n} U_{2n+1} - (\alpha + \gamma) U_{2n}^2 \leq 0$$

the positive root K of the quadratic equation

$$(1-\alpha-\beta) t^2 + 1(1-\beta-\gamma)t - (\alpha+\gamma) = 0$$

is

$$[((1-\beta-\gamma)^2 + 4(\alpha+\gamma)(1-\alpha-\beta))^{1/2} - (1-\beta-\gamma)] / (2-2\alpha-2\beta)$$

and since $\alpha + \beta + \gamma < 1$, it follows that $K < 1$, Thus

$$U_{2n+1} \leq KU_{2n}.$$

Similarly, if $U_{2n} + U_{2n-1} \neq 0$, $n = 1, 2, 3 \ldots$

then the inequality
\[U_{2n} \leq \frac{\alpha \left((U_{2n-1})^2 + (u_{2n}) \right)}{U_{2n-1} + U_{2n}} + \beta U_{2n} + \gamma U_{2n-1}. \]

like the earlier one, gives

\[U_{2n} \leq K U_{2n-1}. \]

Thus, in general, we have shown that for \(k = 0, 1, 2, \ldots \),

\[U_{k+1} \leq \frac{\alpha \left((U_k)^2 + (U_{k+1})^2 \right)}{U_k + U_{k+1}} + \beta U_{k+1} + \gamma U_k. \]

Having this we see that \(U_{k+1} \leq K U_k \) which yields \(U_k \leq K^k U_0 \). Now it follows that the sequence

\[(5.1.7) \quad \{ Sx_0, Tx_1, Sx_2, \ldots, Tx_{2n-1}, Sx_{2n}, Tx_{2n+1}, \ldots \} \]

is a Cauchy sequence in the complete metric space \((X, d)\) and so has a limit point \(z \) in \(X \). Hence the sequences

\[\{ Sx_{2n} \} = \{ Jx_{2n+1} \} \text{ and } \{ Tx_{2n-1} \} = \{ Ix_{2n} \} \]

Which are subsequences of \((5.1.7)\) also converge to the point \(z \).

Let us suppose that \(I \) is continuous so that the sequences \(\{ Ix_{2n} \} \)
and \(\{ ISx_{2n} \} \) converge to the point \(Iz \). Since \(S \) and \(I \) are weakly commuting, we have

\[d(SIx_{2n}, ISx_{2n}) \leq d(Ix_{2n}, Sx_{2n}). \]
and so the sequence \(\{ S_{2n} \} \) also converges to the point \(I_z \).

We have

\[
\alpha \left[\left\{ d\left(I_{2n}^{2}, S_{2n} \right) \right\}^2 + \left\{ d\left(T_{2n+1}, J_{2n+1} \right) \right\}^2 \right] \\
\leq \frac{d\left(S_{2n}, T_{2n+1} \right)}{d\left(I_{2n}^{2}, S_{2n} \right) + d\left(T_{2n+1}, J_{2n+1} \right)}
\]

\[
\beta \left[1 + d\left(J_{2n+1}, T_{2n+1} \right) \right] d\left(S_{2n}, I_{2n}^{2} \right) \\
+ \frac{1 + d\left(I_{2n}^{2}, J_{2n+1} \right)}{1 + d\left(I_{2n}^{2}, J_{2n+1} \right)}
\]

\[
+ \gamma \ d\left(I_{2n}^{2}, J_{2n+1} \right).
\]

Letting \(n \to \infty \), we have

\[
d\left(I_z, z \right) \leq \gamma \ d\left(I_z, z \right),
\]

a contradiction. It follows that \(I_z = z \). Further

\[
\alpha \left[\left\{ d\left(I_z, S_z \right) \right\}^2 + \left\{ d\left(T_{2n+1}, J_{2n+1} \right) \right\}^2 \right] \\
\leq \frac{d\left(S_z, T_{2n+1} \right)}{d\left(I_z, S_z \right) + d\left(T_{2n+1}, J_{2n+1} \right)}
\]

\[
\beta \left[1 + d\left(J_{2n+1}, T_{2n+1} \right) \right] d\left(S_z, I_z \right) \\
+ \frac{1 + d\left(I_z, J_{2n+1} \right)}{1 + d\left(I_z, J_{2n+1} \right)}
\]
\[+ \gamma d (Iz, Jx_{2n+1}). \]

and letting \(n \to \infty \), we get

\[
d (Sz, z) \leq \alpha d (Sz, z) + \beta d (Sz, z) \leq (\alpha + \beta) d (Sz, z),\]

again a contradiction. Hence \(Sz = z \).

This means that \(z \) is in the range of \(S \) and since the range of \(J \) contains the range of \(S \), there exists a point \(z' \) such that \(Jz' = z \).

Thus,

\[
d (z, Tz') = d (Sz, Tz') = \alpha \left[\{d (Sz, Iz)\}^2 + \{d(Tz', Jz')\}^2 \right] \leq \frac{d (Sz, Iz) + d (Tz', Jz')}{d (Sz, Iz) + d (Tz', Jz')} \]

\[
\beta [1 + d (Jz', Tz')]^2 d (Sz, Iz) + \frac{1 + d (Iz, Jz')}{1 + d (Iz, Jz')} + \gamma d (Iz, Jz') = \alpha d (z, Tz') < d (z, Tz'),
\]
Which implies that $Tz' = z$.

Since T and J weakly commute,
\[
d(Tz, Jz) = d(TJz', JTz') \\
\leq d(Jz', Tz') \\
= d(z, z) = 0
\]
giving there by $Tz = Jz$ and so,
\[
d(z, Tz) = d(Sz, Tz) \\
\leq \frac{\alpha \left[\{d(Iz, Sz)\}^2 + \{d(Tz, Jz)\}^2 \right]}{d(Iz, Sz) + d(Tz, Jz)}
\]
\[
\beta \left[1 + d(Jz, Tz) \right] d(Sz, Iz) \\
+ \frac{1 + d(Iz, Jz)}{1 + d(Iz, Jz)}
\]
\[+ \gamma d(Iz, Jz) = 0\]

Which implies that $z = Tz = Jz$.

We therefore have proved that z is a common fixed point of S, T, I, and J.

Now suppose that S is continuous, so that the sequences $\{S^2x_{2n}\}$ and $\{SIx_{2n}\}$ converge to Sz. Since S and I weakly commute, it follows as above that the sequence $\{ISx_{2n}\}$ also converges to Sz. Thus
\[d(S^2x_{2n}, T_{x_{2n+1}}) \leq \frac{\alpha\left[\left\{d\left(S^2x_{2n}, ISx_{2n}\right)\right\}^2 + \left\{d\left(T_{x_{2n+1}}, J_{x_{2n+1}}\right)\right\}^2\right]}{d(S^2x_{2n}, ISx_{2n}) + d(T_{x_{2n+1}}, J_{x_{2n+1}})} \]

\[\beta\left[1 + d(J_{x_{2n+1}}, T_{x_{2n+1}})\right] d\left(S^2x_{2n}, ISx_{2n}\right) \]

\[+ \frac{1 + d(ISx_{2n}, J_{x_{2n+1}})}{1 + d(ISx_{2n}, J_{x_{2n+1}})} \]

\[+ \gamma d(ISx_{2n}, J_{x_{2n+1}}), \]

Letting \(n \to \infty \), we have

\[d(Sz, z) \leq \gamma d(Sz, z) < d(Sz, z) \]

It follows that \(Sz = z \).

Once again, there exists a point \(z' \) in \(X \) such that \(Jz' = z \).

\[d(S^2x_{2n}, Tz') \leq \frac{\alpha\left[\left\{d\left(S^2x_{2n}, ISx_{2n}\right)\right\}^2 + \left\{d(Tz', Jz')\right\}^2\right]}{d(S^2x_{2n}, ISx_{2n}) + d(Tz', Jz')} \]

\[\beta \left[1 + d(Jz', Tz')\right] d(S^2x_{2n}, ISx_{2n}) \]

\[+ \frac{1 + d(ISx_{2n}, Jz')}{1 + d(ISx_{2n}, Jz')} \]

\[+ \gamma d(ISx_{2n}, Jz'). \]
Letting $n \to \infty$, we have
\[d(z, Tz') \leq \gamma d(z, Tz') \]
So that
\[z = Tz'. \]

Since T and J weakly commute, it again follows as above that
\[Tz = Jz. \]
Further,
\[d(Sx_{2n}, Tz) \leq \frac{\alpha \left[\{ d(Sx_{2n},Ix_{2n}) \}^2 + \{ d(Tz,Jz) \}^2 \right]}{d(Sx_{2n},Ix_{2n}) + d(Tz,Jz)} \]
\[+ \beta \left[1 + d(Jz,Tz) \right] d(Sx_{2n},Ix_{2n}) \]
\[+ \frac{1 + d(Ix_{2n},Jz)}{1 + d(Ix_{2n},Jz)} \]
\[+ \gamma d(Ix_{2n}, Jz). \]

Letting $n \to \infty$, we have
\[d(z, Tz) \leq \gamma d(z, Tz) \]
and so
\[z = Tz = Jz. \]

The point z therefore is in the range of T and since the range of I
contains the range of T, there exist a point z'' in X such that $Tz'' = z$. Thus

$$d (Sz'', z) = d (Sz'', Tz)$$

$$\leq \alpha \left[\{d (Sz'', Iz'')\}^2 + \{d (Tz, Jz)\}^2 \right]$$

$$d (Sz'', Iz'') + d (Tz, Jz)$$

$$= \beta [1 + d (Jz, Tz)] d (Sz'', Iz'')$$

$$+ \gamma d (Iz'', Jz).$$

$$= (\alpha + \beta) d (Sz'', z).$$

and so $Sz'' = z$.

Again, since S and I weakly commute, we have

$$d (Sz, Iz) = d (SIz'', ISz'') \leq d (Iz'', Sz'') = d (z, z) = 0$$

Thus $Sz = Iz = z$.

We thus have proved again that z is a common fixed point of S, T, I and J.

If the mappings T or J is continuous instead of S or I then the proof that z is a common fixed point of S, T, I and J is similar.
Case 2. Suppose $U_{2n} + U_{2n+1} = 0$. Then, for some n, the inequality (5.1.6) gives

$$U_{2n} = d(Sx_{2n}, Tx_{2n+1}) = 0,$$
and

$$U_{2n+1} = d(Tx_{2n+1}, Sx_{2n+2}) = 0,$$
giving there by

$$Sx_{2n} = Jx_{2n+1} = Tx_{2n+1} = Sx_{2n+2} = \ldots = z.$$

Now we assert that there exists a point w such that

$$Sw = lw = Tw = Jw = z$$
because if $Sw = lw \neq z$, then

$$0 < d(lw, z) = d(Sw, Tx_{2n+1})$$

$$\leq \frac{\alpha[\{d(Sw, lw)\}^2 + \{d(Tx_{2n+1}, Jx_{2n+1})\}^2]}{d(Sw, lw) + d(Tx_{2n+1}, Jx_{2n+1})}$$

$$+ \frac{\beta [1 + d(Jx_{2n+1}, Tx_{2n+1})] d(Sw, lw)}{1 + d(lw, Jx_{2n+1})} + \gamma d(lw, Jx_{2n+1})$$

$$\leq \gamma d(lw, z) < d(lw, z)$$

Which yields that $lw = z = Sw$. Similarly, one can argue that $Tw = Jw = z$.

Now suppose that I or S is continuous. Proceeding as above, it can be shown that $lw = z$ is a common fixed point of S, T, I and J.
Furthermore, if J or T is continuous, then the proof that z is a common fixed point of S, T, I, and J is similar.

In order to prove the uniqueness of the common fixed point z, let w be a second common fixed point of S and I. Then

\[
 d(w, z) = d(Sw, Tz) \\
 \leq \frac{\alpha \left[\{d(Sw, Iw)\}^2 + \{d(Tz, Jz)\}^2 \right]}{d(Sw, Iw) + d(Tz, Jz)} \\
 + \frac{\beta [1 + d(Jz, Tz)] d(Sw, Iw)}{1 + d(Iw, Jz)} \\
 + \gamma d(Iw, Jz) = 0,
\]

Which yields that $w = z$.

Similarly it can be proved that z is a unique common fixed point of T and J.

This completes the proof.

REMARK:

On taking $\beta = 0$, $\alpha = a$ and $\gamma = b$ in Theorem 1, we get Theorem A.
Our next result is as follows:

THEOREM 2 Let \(\{ S, T \} \) and \(\{ T, J \} \) be two weakly commuting pairs of mappings of a complete metric space \((X, d)\) satisfying the conditions (5.1.1), (5.1.3) and (5.1.5) the following:

\[
\{ \{ d(Sx, Ix) \}^2 + \{ d(Ty, Jy) \}^2 \} \leq C \max \left\{ \begin{array}{c}
\frac{d(Sx, Ix) + d(Ty, Jy)}{1 + d(Ix, Jy)} \\
\frac{d(Ix, Jy)}{1 + d(Ix, Jy)}
\end{array} \right\}
\]

(5.1.8)

If \(d(Sx, Ix) + d(Ty, Ty) \neq 0 \) where \(0 \leq C < 1 \),

or,

If one of \(S, T, I \) or \(J \) is continuous then \(S, T, I \) and \(J \) have a unique common fixed point \(z \). Further, \(z \) is the unique common fixed point of \(S \) and \(I \) and of \(T \) and \(J \).

PROOF Let \(x_0 \) be an arbitrary point in \(X \). As \(S(X) \) is contained in \(J(X) \), we can choose a point \(x_1 \) in \(X \) such that \(Sx_0 = Jx_1 \). Since \(T(X) \) is also contained in \(I(X) \), we can choose a point \(x_2 \) in \(X \) such that \(Tx_1 = Ix_2 \). In this way, we can
choose \(x_{2n}, x_{2n+1}, x_{2n+2} \) such that \(Sx_{2n} = Jx_{2n+1} \) and \(Tx_{2n+1} = Ix_{2n+2} \) for \(n = 0, 1, 2, \ldots \). Let us denote \(U_{2n} = d(Sx_{2n}, Tx_{2n+1}) \) and \(U_{2n+1} = d(Tx_{2n+1}, Sx_{2n+2}) \).

We distinguish two cases:

Case 1. Suppose \(U_{2n} + U_{2n+1} \neq 0 \) for \(n = 0, 1, 2, \ldots \), then on using inequality (5.1.8), we get

\[
(7.1.9) \quad U_{2n+1} \leq C \max \left\{ \frac{(U_{2n})^2 + (U_{2n+1})^2}{U_{2n} + U_{2n+1}}, \frac{U_{2n}}{U_{2n+1}} \right\}
\]

If \(\max \left\{ \frac{(U_{2n})^2 + (U_{2n+1})^2}{U_{2n} + U_{2n+1}}, \frac{U_{2n}}{U_{2n+1}} \right\} = \frac{(U_{2n})^2 + (U_{2n+1})^2}{U_{2n} + U_{2n+1}} \),

Then,

\[
U_{2n+1} \leq C \left[\frac{(U_{2n})^2 + (U_{2n+1})^2}{U_{2n} + U_{2n+1}} \right]
\]

So that

\[
(1 - C) U_{2n+1}^2 + U_{2n} U_{2n+1} - C U_{2n}^2 \leq 0
\]

The positive root \(K \) of the quadratic equation

\[
(1 - C) t^2 + t - C = 0
\]

is

\[
\left[\{1 + 4 (1-C) C \}^{1/2} - (1 - C) \right] / (2 - 2C)
\]
and since $C < 1$, it follows that $K < 1$. Thus

$$U_{2n+1} \leq KU_{2n}.$$

If

$$\max \left\{ \frac{(U_{2n})^2 + (U_{2n+1})^2}{U_{2n} + U_{2n+1}}, U_{2n+1}, U_{2n} \right\} = U_{2n+1}$$

Then

$$U_{2n+1} \leq C U_{2n+1}$$

Which is impossible, Since $C < 1$.

If

$$\max \left\{ \frac{(U_{2n})^2 + (U_{2n+1})^2}{U_{2n} + U_{2n+1}}, U_{2n+1}, U_{2n} \right\} = U_{2n}$$

Then

$$U_{2n+1} \leq C U_{2n}$$

So, we have

$$U_{2n+1} \leq K U_{2n}.$$

Similarly if $U_{2n} + U_{2n-1} \neq 0$, n= 1, 2, then inequality

$$\frac{(U_{2n-1})^2 + (U_{2n})^2}{U_{2n-1} + U_{2n}}$$

like the earlier are, gives

$$U_{2n} \leq K U_{2n-1}$$
Thus, in general, we have shown that for \(k = 0, 1, 2, \ldots \)

\[
U_{k+1} \leq C \max \left\{ \frac{(U_k)^2 + (U_{k+1})^2}{U_k + U_{k+1}}, U_{k+1}, U_k \right\}
\]

Having this we see that \(U_{k+1} \leq K U_k \) which yields \(U_k \leq K^k U_0 \), now it follows that the sequence

\[
\text{(7.1.10)} \quad \{Sx_0, Tx_1, Sx_2, \ldots, Tx_{2n-1}, Sx_{2n}, Tx_{2n+1}, \ldots\}
\]

is a cauchy sequence in the complete metric space \((X, d)\) and so has a limit point \(z \) in \(X \). Hence the sequences

\[
\{Sx_{2n}\} = \{Ix_{2n+1}\} \text{ and } \{Tx_{2n-1}\} = \{Ix_{2n}\}
\]

Which are subsequences of (5.1.10) also converge to the point \(z \).

Let us suppose that \(I \) is continuous so that the sequence \(\{I^2x_{2n}\} \)

and \(\{ISx_{2n}\} \) converge to the point \(Iz \). Since \(S \) and \(I \) are weakly commuting, we have

\[
d(ISx_{2n}, ISx_{2n}) \leq d(Ix_{2n}, Sx_{2n})
\]

and so the sequence \(\{SIx_{2n}\} \) also converges to the point \(Iz \). We have
\[d(\text{SI}_x, \text{TX}_{2n+1}) \leq C \max \left\{ \frac{\left(\{d(I^2x_{2n}^{}, SIx_{2n}^{})\}^2 + \{d(Tx_{2n+1}^{}, Jx_{2n+1}^{})\}^2 \right)}{d(I^2x_{2n}^{}, SIx_{2n}^{}) + d(Tx_{2n+1}^{}, Jx_{2n+1}^{})}, \right\} \]

Letting \(n \to \infty \), we have

\[d(Iz, z) \leq C d(Iz, z), \]

a contradiction. It follows that \(Iz = z \). Further

\[d(Sz, Tx_{2n+1}) \leq C \max \left\{ \frac{\left(\{d(Iz, Sz)\}^2 + \{d(Tx_{2n+1}^{}, Jx_{2n+1}^{})\}^2 \right)}{d(Iz, Sz) + d(Tx_{2n+1}^{}, Jx_{2n+1}^{})}, \right\} \]

and letting \(n \to \infty \), we get

\[d(Sz, z) \leq C d(Sz, z) \]

again a contradiction. Hence \(Sz = z \).
This means that \(z \) is in the range of \(S \) and since the range of \(J \) contains the range of \(S \), there exists a point \(z' \) such that \(Jz' = z \). Thus

\[
d(z, Tz') = d(Sz, Tz') \leq C \max \left\{ \frac{\{d(Sz, Iz)\}^2 + \{d(Tz', Jz')\}^2}{d(Sz, Iz) + d(Tz', Jz')} \right\},
\]

\[
\leq C \max \left\{ \frac{[1 + d(Jz', Tz')]d(Sz, Iz)}{1 + d(Iz, Jz')} \right\},
\]

\[
d(Iz, Jz') \}
\]

\[
\leq C d(z, Tz')
\]

Which implies that \(Tz' = z \).

Since \(T \) and \(J \) weakly commute,

\[
d(Tz, Jz) = d(TJz', JTz') \leq d(Jz', Tz') = d(z, z) = 0
\]

giving there by \(Tz = Jz \) and so

\[
d(z, Tz) = d(Sz, Tz)
\]
\[
\begin{align*}
\frac{{\{ d(Iz, Sz) \}^2 + \{ d(Tz, Jz) \}^2}}{d(Iz, Sz) + d(Tz, Jz)} \\
\frac{\{ 1 + d(Jz, Tz) \} d(Sz, Iz)}{1 + d(Iz, Jz)} \\
\frac{\{ d(Iz, Jz) \}^2}{d(Iz, Jz)} \leq 0
\end{align*}
\]

Which implies that \(z = Tz = Jz \).

We therefore have proved that \(z \) is a common fixed point of \(S \), \(T \), \(I \) and \(J \).

Now suppose that \(S \) is continuous, so that the sequences \(\{ S^2x_{2n} \} \) and \(\{ SIx_{2n} \} \) converge to \(Sz \). Since \(S \) and \(I \) weakly commute, it follows as above that the sequence \(\{ ISx_{2n} \} \) also converges to \(Sz \). Thus

\[
\begin{align*}
d(S^2x_{2n}, Tx_{2n+1}) \leq C \max \left\{ \frac{\{ d(S^2x_{2n}, ISx_{2n}) \}^2 + \{ d(Tx_{2n+1}, Jx_{2n+1}) \}^2}{d(S^2x_{2n}, SIx_{2n}) + d(Tx_{2n+1}, Jx_{2n+1})}, \right. \\
\left. \frac{\{ 1 + d(Jx_{2n+1}, Tx_{2n+1}) \} d(S^2x_{2n}, ISx_{2n})}{1 + d(ISx_{2n}, Jx_{2n+1})} \right\}
\end{align*}
\]

Letting \(n \to \infty \) we have

\[
d(Sz, z) \leq C d(Sz, z),
\]
It follows that \(S_z = z \).

Once again, there exists a point \(z' \) in \(X \) such that \(Jz' = z \).

\[
\left\{ \left[d(S^2x_{2n}, ISx_{2n}) \right]^2 + \left[d(Tz', Jz') \right]^2 \right\}
\leq C \max \left\{ \frac{d(S^2x_{2n}, Tz')}{d(S^2x_{2n}, ISx_{2n}) + d(Tz', Jz')}, \frac{[1 + d(Jz', Tz')] d(S^2x_{2n}, ISx_{2n})}{1 + d(ISx_{2n}, Jz')} \right\}
\]

Letting \(n \to \infty \), we have

\[d(z, Tz') \leq C d(z, Tz'), \]

So that \(z = Tz' \),

Since \(T \) and \(J \) weakly commute, it again follows as above that

\[Tz = Jz. \] Further,

\[
\left\{ \left[d(Sx_{2n}, Ix_{2n}) \right]^2 + \left[d(Tz, Jz) \right]^2 \right\}
\leq C \max \left\{ \frac{d(Sx_{2n}, Tz)}{d(Sx_{2n}, Ix_{2n}) + d(Tz, Jz)}, \frac{[1 + d(Jz, Tz)] d(Sx_{2n}, Ix_{2n})}{1 + d(Ix_{2n}, Jz)} \right\}
\]
Letting $n \to \infty$, we have

$$d(z, Tz) \leq C \ d(z, Tz)$$

and so that

$$z = Tz = Jz.$$

The point z therefore is in the range of T and since the range of I contains the range of T, there exists a point z'' in X such that $Tz'' = z$. Thus,

$$d(Sz'', z) = d(Sz'', Tz')$$

$$\leq C \max \left\{ \frac{[\{d(Sz'', Iz'')\}^2 + \{d(Tz, Jz)\}^2]}{d(Sz'', Iz'') + d(Tz, Jz)} \right\}$$

$$\leq C \ d(Sz'', z)$$

and so

$$Sz'' = z.$$

Again, Since S and I weakly commute, we have

$$d(Sz, Iz) = d(SIz'', ISz'') \leq d(Iz'', Sz'') = d(z, z) = 0$$

Thus

$$Sz = Iz = z.$$

We thus have proved again that z is a common fixed point of S, T, I and J.

If the mappings T or J is continuous instead of S or I then the proof that z is a common fixed point of S, T, I and J is similar.
Case 2 Suppose \(U_{2n} + U_{2n+1} = 0 \). Then, for some \(n \), the inequality (5.1.6) gives

\[
U_{2n} = d (Sx_{2n}, Tx_{2n+1}) = 0, \text{ and }
\]

\[
U_{2n+1} = d (Tx_{2n+1}, Sx_{2n+2}) = 0, \text{ giving there by}
\]

\[
Sx_{2n} = Jx_{2n+1} = Tx_{2n+1}, Sx_{2n+2} = \ldots \ldots = z.
\]

Now we assert that there exists a point \(w \) such that

\[
Sw = Iw = Tw = Jw = z \quad \text{because if} \quad Sw = Iw \neq z, \text{ then} \]

\[
0 < d (Iw, z) = d (Sw, Tx_{2n+1})
\]

\[
\leq C \max \left\{ \frac{[d (Sw, Iw))^2 + d (Tx_{2n+1}, Jx_{2n+1})^2]}{d(Sw, Iw) + d(Tx_{2n+1}, Jx_{2n+1})} \right\}
\]

\[
\leq C \max \left\{ \frac{[1 + d(Jx_{2n+1}, Tx_{2n+1})]d(Sw, Iw)}{1 + d(Iw, Jx_{2n+1})} \right\}
\]

Which yields that \(Iw = z = Sw \). Similarly, one can range the \(Tw = Jw = z \).

Now suppose that \(I \) or \(S \) or continuous. Proceeding as above, it can be shown that \(Iw = z \) is a common fixed point \(S, T, I \) and \(J \).

Further more, if \(J \) or \(T \) is continuous, then the proof that \(z \) is a

common fixed point of \(S, T, I \) and \(J \) is similar.
In order to prove the uniqueness of the common fixed point \(z \), let \(w \) be a second common fixed point of \(S \) and \(I \). Then,

\[
d(w, z) = d(Sw, Tz)
\]

\[
\leq C \max \left\{ \frac{[d(Sw, Iw)]^2 + [d(Tz, Jz)]^2}{d(Sw, Iw) + d(Tz, Jz)}, \frac{[1 + d(Jz, Tz)] d(Sw, Iw)}{1 + d(Iw, Jz)}, d(Iw, Jz) \right\}
\]

\[
\leq 0
\]

Which yields that \(w = z \).

Similarly it can be proved that \(z \) is a unique common fixed point of \(T \) and \(J \).

This completes the proof.