CHAPTER III

Fixed Point Theorems in Complete 2-Metric Space
CHAPTER III

FIXED POINT THEOREMS IN COMPLETE 2-METRIC SPACE.

3.1 Let \((M,d)\) be a metric space. A mapping \(T\) on \(M\) is orbitally continuous if \(\lim_{i} T^{n_i}x = z\) implies \(\lim_{i} T^{n_i}x = Tz\) for each \(x\) in \(M\). A space \(M\) is said to be \(T\)-orbitally complete if every Cauchy sequence of the form \(\{T^{n_i}x\}_{i=1}^{\infty}\), \(x\) in \(M\), converges in \(M\).

Ciric [144] has obtained a result regarding the existence of non-unique fixed points for orbitally continuous self mapping on a orbitally complete metric space:

THEOREM C: Let \((M,d)\) be orbitally complete metric space and \(T\) be a orbitally continuous self mapping of \(X\), satisfying:

\[(3.1.1) \quad \min \{d(Tx, Ty), d(x, Tx), d(y, Ty)\} \leq \min \{d(x, Ty), d(y, Tx)\} \leq q d(x, y)\]

[144] Ciric, L.B. (17)
for all \(x, y\) in \(M\) and \(q \in [0, 1]\).

Then for each \(x\) in \(M\) the sequence \(\{T^n x\}\) converges to a fixed point of \(T\).

Recently Dhage [145] obtain the following generalization of theorem C:

Theorem D: Let \(T : M \rightarrow M\) be an orbitally continuous self map of a metric space \(M\) and let \(M\) be \(T\)-orbitally complete.

If \(T\) satisfies the condition:

\[
(3.1.2) \quad \min \{d(Tx, Ty), d(x, Tx), d(y, Ty)\} \\
+ a \min \{d(x, Ty), d(y, Tx)\} \leq p \, d(x, y) + q \, d(x, Tx),
\]

for all \(x, y\) in \(M\) and \(a, p, q\) are real numbers such that \(0 < p + q < 1\), then for each \(x\) in \(M\), the sequence \(\{T^n x\}\) converges to a fixed point of \(T\).

Recently, Pachpatte [146] proved the following non-unique fixed point theorem for Cirić type mapping:

\[\text{[145]} \quad \text{Dhage, B.C.} \quad (21)\]
\[\text{[146]} \quad \text{Pachpatte, B.C.} \quad (87)\]
THEOREM P: Let $T : M \rightarrow M$ be an orbitally continuous mapping on M and let M be T-orbitally complete. If T satisfies:

$$
(3.1.3) \quad \min\{([d(Tx, Ty)]^2, d(x, y)d(Tx, Ty), [d(y, Ty)]^2)
- \min\{d(x, Tx) \ d(y, Ty), \ d(x, Ty) \ d(y, Tx)\}
\leq q \ d(x, Tx) \ d(y, Ty)
$$

for all $x, y \in M$ and $q \in (0, 1)$, then for each $x \in M$, then sequence $(T^n x)_{n=1}^{\infty}$ converges to a fixed point of T.

Many authors have extended and generalized Ciric theorem, Iseki [147], Pachpatte [148], Mishra [149], Lal and Das [150], Narayan, Thapliyal and Virendra [151].

[147] Iseki, K. (44)
[148] Pachpatte, B.G. (88)
[149] Mishra, S.N. (80)
[150] Lal, S.N. and Das M. (70)
[151] Narayanan, K.A; Thapliyal, P.S. and Virendra. (85)
Singh and Iseki [152], Cho [153], [154], Dhage [155], T.Som [156], Pathak [157], Argyros [158].

In theorem of Ciric and Dhage fixed point is not unique.

3.2 In a Paper Gahler [159] investigated the notion of 2-metric: a real valued function for a point triples on a set X, whose abstract properties, were suggested by the area function for a triangle determined by a triple in Euclidean space. The theory of 2-metric space has been extensively studied and developed by Gahler [160], [161],

<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>[152]</td>
<td>Singh, S.L. and Iseki, K.</td>
<td>(128)</td>
</tr>
<tr>
<td>[153]</td>
<td>Cho, Y.J.</td>
<td>(13)</td>
</tr>
<tr>
<td>[154]</td>
<td>Cho, Y.J.</td>
<td>(14)</td>
</tr>
<tr>
<td>[155]</td>
<td>Dhage, B.C.</td>
<td>(21)</td>
</tr>
<tr>
<td>[156]</td>
<td>Som, T.</td>
<td>(134)</td>
</tr>
<tr>
<td>[157]</td>
<td>Pathak, H.K.</td>
<td>(94)</td>
</tr>
<tr>
<td>[158]</td>
<td>Argyros, I.K.</td>
<td>(6)</td>
</tr>
<tr>
<td>[159]</td>
<td>Gahler, S.</td>
<td>(32)</td>
</tr>
<tr>
<td>[160]</td>
<td>Gahler, S.</td>
<td>(33)</td>
</tr>
<tr>
<td>[161]</td>
<td>Gahler, S.</td>
<td>(34)</td>
</tr>
</tbody>
</table>
White [162], Iseki [163] and others,

We need some definitions:

DEFINITION 1: A 2-metric space in a space X, with a real valued function d, defined on $X \times X \times X$ satisfying:

(3.2.1) For two distinct points, a, b there is a point c such that

\[d(a, b, c) \neq 0, \]

(3.2.2) $d(a, b, c) = 0$ if at least two of three points are equal,

(3.2.3) $d(a, b, c) = d(a, c, b) = d(b, c, a)$ in symmetric about the three variables.

(3.2.4) $d(a, b, c) < d(a, b, p) + d(a, p, c) + d(p, b, c)$.

DEFINITION 2: A sequence $\{x_n\}$ in X is called a Cauchy sequence if,

(3.2.5) $\lim_{m, n} d(x_m, x_n, a) = 0$ for all x in X.

[162] White, A.G. (141)

[163] Iseki, K. (47)
Definition 3: The sequence \(\{x_n\} \) is convergent to \(x \) in \(X \) and \(x \) is said to be the limit point of the sequence if,

\[
\lim_{n \to \infty} d(x_n, x, a) = 0 \text{ for some } x \text{ in } X.
\]

A 2-metric space in which every Cauchy sequence converges is called complete.

Iseki, Sharma and Sharma [164], Rao and Rao [165], Khan [166], [167], Singh [168] and many others have studied contractive mapping on 2-metric space.

Gahler has proved that the two metric \(d \) is continuous function of any one coordinate (\(x \) or \(y \) or \(z \)) but it may not be continuous for two coordinates, if it is then it is continuous in all three coordinates.

Definition 4: (Compare Sessa [169]) Two mappings \(P \) and \(T \) on 2-metric space \(X \) are weakly commuting iff,

\[
d(PTx, TPx, a) \leq d(Px, Tx, a)
\]

for all \(x, a \) in \(X \).

[164] Iseki, K., Sharma, P.L. and Sharma, B.K. (42)
[165] Rao, I.H.N. and Rao, K.P.R. (96)
[166] Khan, M.S. (59)
[167] Khan, M.S. (60)
[168] Singh, S.L. (123)
[169] Sessa, S. (116)
DEFINITION 5: (Compare Singh and Ram [170], Jungck [171].)

Two self mappings P and T on 2-metric space are said to be asymptotically commuting iff,

$$
\lim_{n \to \infty} d(PT_{x_n}, TP_{x_n}) = 0, \\
\{x_n\} \text{ is a sequence in } X \text{ such that for any point } u \text{ in } X,
$$

$$
\lim_{n \to \infty} Px_n = \lim_{n \to \infty} Tx_n = u.
$$

Sessa [172] has shown that commuting and also weakly commuting mapping with (3.2.9) are asymptotically commuting.

3.3

The object of this chapter is to prove:

THEOREM 1: Suppose (X,d) is a 2-metric space where d is continuous. Let P,Q,T be self mappings on X and a_i, a_i ($i = 1, 2, ..., 9$) are real numbers such that

$$
0 < a_i < 1 \text{ and } \sum_{i=1}^{9} a_i < 1,
$$

$$
a_1 + a_2 + 2a_3 + 2a_5 + a_6 + a_7 + a_9 < 1, \text{then for all } x,y,a \text{ in } X, \text{ and}
$$

[170] Singh, S.L. and Ram, B. (132)

[171] Jungck, G. (53)

(3.3.3) \[\min \{d(Px,Qy,a), d(Tx,Px,a), d(Ty,Qy,a)\} \]

\[+ \min \{d(Tx,Qy,a), d(Ty,Px,a)\} \]

\[\leq a_1 d(Tx,Px,a) + a_2 d(Ty,Qy,a) + a_3 d(Tx,Qy,a) \]

\[+ a_4 d(Ty,Px,a) + a_5 d(Tx,TPx,a) + a_6 d(Ty,TPx,a) \]

\[+ a_7 d(Px,TPx,a) + a_8 d(Qy,TPx,a) + a_9 d(Tx,Ty). \]

(3.3.4) For any point \(x_0 \) in \(X \), \(\{x_n\} \) is such that

\[Tx_{2n+1} \neq Px_{2n}, \quad Tx_{2n+2} = Qx_{2n+1} \]

\[Tx_{2n+1} \neq Tx_{n+2}, \quad n = 0,1,2, \ldots \]

(3.3.5) any one sequence of \(\{Tx_n\} \) converges to any point \(z \) of \(X \);

(3.3.6) mapping \(P,Q,T \) are continuous at point \(z \);

(3.3.7) the pairs \(\{T,P\} \) and \(\{T,Q\} \) are \(z \)-asymptotically commuting,

then \(z \) is a coincident point of the mappings \(P,Q,T \) i.e. \(Pz = Qz = Tz \). Again if \(\frac{k}{a} \epsilon (0,1) \) then \(z \) is a unique fixed point of \(P,Q \) and \(T \).
\textbf{Proof:} We put } x = x_{2n} \text{ and } y = x_{2n+1} \text{ in (3.3.3)} \text{ and write,}

\[
\min \{d(Tx_{2n+1}, Tx_{2n+2}, a), d(Tx_{2n}, Tx_{2n+1}, a), d(Tx_{2n+1}, Tx_{2n+2}, a)\}
\]

\[
\quad + a \min \{d(Tx_{2n}, Tx_{2n+2}, a), d(Tx_{2n+1}, Tx_{2n+1}, a)\}
\]

\[
\leq a_1 d(Tx_{2n}, Tx_{2n+1}, a) + a_2 d(Tx_{2n+1}, Tx_{2n+2}, a)
\]

\[
\quad + a_3 d(Tx_{2n}, Tx_{2n+2}, a) + a_4 d(Tx_{2n+1}, Tx_{2n+1}, a)
\]

\[
\quad + a_5 d(Tx_{2n}, Tx_{2n+2}, a) + a_6 d(Tx_{2n+1}, Tx_{2n+2}, a)
\]

\[
\quad + a_7 d(Tx_{2n+1}, Tx_{2n+2}, a) + a_8 d(Tx_{2n+2}, Tx_{2n+2}, a)
\]

\[
\quad + a_9 d(Tx_{2n}, Tx_{2n+1}, a)
\]

\text{i.e.}

\[
\min \{d(Tx_{2n+1}, Tx_{2n+2}, a), d(Tx_{2n}, Tx_{2n+1}, a)\}
\]

\[
\leq (a_1 + a_3 + a_5 + a_9) d(Tx_{2n}, Tx_{2n+1}, a)
\]

\[
\quad + (a_2 + a_3 + a_5 + a_6 + a_7) d(Tx_{2n+1}, Tx_{2n+2}, a)
\]

\[
\text{or, } d(Tx_{2n+1}, Tx_{2n+2}, a) \leq \frac{a_1 + a_3 + a_5 + a_9}{1 - a_2 - a_3 - a_5 - a_6 - a_9} d(Tx_{2n}, Tx_{2n+1}, a)
\]

Similarly, we obtain by putting

\[
x = x_{2n+1}, \quad y = x_{2n+2}
\]

\[
d(Tx_{2n+2}, Tx_{2n+3}, a) \leq \frac{a_1 + a_3 + a_5 + a_9}{1 - a_2 - a_3 - a_5 - a_6 - a_9} d(Tx_{2n+1}, Tx_{2n+2}, a)
\]
Thus we have

\[(3.3.8) \quad d(Tx_{2n+1}, Tx_{2n+2}, a) \leq k \cdot d(Tx_{2n}, Tx_{2n+1}, a)\]

where \(k = \frac{a_1 + a_3 + a_5 + a_9}{1 - a_2 - a_3 - a_5 - a_6 - a_9} \in (0, 1), \)

\[\leq k^2 \cdot d(Tx_{2n-1}, Tx_{2n}, a)\]

Proceeding in this manner, we get in the usual way \(\{Tx_n\} \)

is a Cauchy sequence, thus from \((3.3.5)\) \(Tx_{2n} \rightarrow z, \)

\(Px_{2n} \rightarrow z \) and \(Qx_{2n+1} \rightarrow z \) and from \((3.3.6)\) \(PTx_{n_i} \rightarrow Pz. \)

and \(TPx_{n_i} \rightarrow Tz, \) where \(\{n_i\} \) is a subsequence of \(\{n\}. \)

Since \(P \) and \(T \) are asymptotically commuting, therefore for \(a \) in \(X, \)

\[\lim_{n_i} d(PTx_{n_i}, TPx_{n_i}, a) = 0,\]

and due to continuity of \(d \) for each \(a \) in \(X, \)

\[d(Pz, Tz, a) = 0.\]

Therefore, \(Pz = Tz. \) Similarly, \(Qz = Tz. \)

Put \(x = x_{2n} \) and \(y = z \) and taking limits, we get

\[d(z, Tz, a) \leq \frac{k}{a} \cdot d(z, Tz, a)\]
Thus \(Tz = z \), \(z \) is the common fixed point of \(P, Q, T \). It is easy to prove that \(z \) is unique. Thus completes the proof of theorem 1.

Remark 1: If we put \(a = -1 \) and \(a_i = 0 \) for \(i = 1, 2, \ldots, 8 \) in the hypothesis and \(P = Q, T = I \) (Identity mapping), then for metric space we get the above mentioned theorem of Ciric.

Remark 2: If we put \(a_i = 0 \) for \(i = 2, 3, \ldots, 8 \) in the hypothesis, and \(P = Q, T = I \), then we get for metric space the result of Dhage (mentioned above).

3.4 Now we shall start with \(A(X) \subset S(X) \cap T(X) \) and prove:

Theorem 2: Suppose \((X, d)\) is a 2-metric space where \(d \) is continuous. Let \(A, S, T \) be self mapping on \(X \) and \(a, a_i \) for \(i = (i = 1, 2, \ldots, 9) \) are real number such that

\[
\begin{align*}
(3.4.1) & \quad 0 \leq a_i < 1 \text{ and } \sum_{i=1}^{9} a_i < 1, \\
(3.4.2) & \quad a_1 + a_2 + 2a_3 + 2a_5 + a_6 + a_7 + a_9 < 1, \text{ then for all } x, y, z \text{ in } X \text{ and }
\end{align*}
\]
(3.4.3) \[\min\{d(Ax, Ay, a), d(Sx, Ax, a), d(Ty, Ay, a)\} \]
+ \(a \min\{d(Sx, Ay, a), d(Ty, Ax, a)\}\)
\[\leq a_1 d(Sx, Ax, a) + a_2 d(Ty, Ay, a) + a_3 d(Sx, Ay, a)\]
+ \(a_4 d(Ty, Ax, a) + a_5 d(Sx, SAx, a) + a_6 d(Ty, SAx, a)\)
+ \(a_7 d(Ax, SAx, a) + a_8 d(Ay, SAx, a) + a_9 d(Sx, Ty)\).

(3.4.4) for any point \(x_0\) in \(X\), \(\{x_n\}\) is such that

\[S_{x_2n+1} = Ax_{2n}, \quad T_{x_2n+2} = Ax_{2n+1}\]

\[Ax_{n+1} \neq Ax_{n+2}, \quad n = 0, 1, 2, \ldots\]

(3.4.5) any one sequence of \(\{Ax_n\}\) converges to any point \(z\) in \(X\);

(3.4.6) mappings \(A, S, T\) are continuous at point \(z\);

(3.4.7) the pairs \(\{A, S\}\) and \(\{A, T\}\) are \(z\)-asymptotically commuting

then \(z\) is a coincident point of the mapping \(A, S, T\) i.e. \(Az = Sz = Tz\). Again if \(\frac{k}{a} \in (0, 1)\), then \(z\) is a unique fixed point of \(A, S\) and \(T\).

PROOF: By putting \(x = x_{2n}\) and \(y = x_{2n+1}\) in the hypothesis, we write:
\[
\min\{d(Ax_{2n}, Ax_{2n+1}, a), d(Ax_{2n-1}, Ax_{2n}, a), d(Ax_{2n}, Ax_{2n+1}, a)\}
\]

\[+ a \min\{d(Ax_{2n-1}, Ax_{2n+1}, a), d(Ax_{2n}, Ax_{2n}, a)\}\]

\[\leq a_1 d(Ax_{2n-1}, Ax_{2n}, a) + a_2 d(Ax_{2n}, Ax_{2n+1}, a)\]

\[+ a_3 d(Ax_{2n-1}, Ax_{2n+1}, a) + a_4 d(Ax_{2n}, Ax_{2n}, a)\]

\[+ a_5 d(Ax_{2n-1}, Ax_{2n+1}, a) + a_6 d(Ax_{2n}, Ax_{2n+1}, a)\]

\[+ a_7 d(Ax_{2n}, Ax_{2n+1}, a) + a_8 d(Ax_{2n+1}, Ax_{2n+1}, a)\]

\[+ a_9 d(Ax_{2n-1}, Ax_{2n}, a)\]

i.e. \[
\min\{d(Ax_{2n}, Ax_{2n+1}, a), d(Ax_{2n-1}, Ax_{2n}, a)\}\]

\[\leq (a_1 + a_3 + a_5 + a_9) d(Ax_{2n-1}, Ax_{2n}, a)\]

\[+ (a_2 + a_3 + a_5 + a_6 + a_7) d(Ax_{2n}, Ax_{2n+1}, a)\]

\[\leq \frac{a_1 + a_3 + a_5 + a_9}{1 - a_2 - a_3 - a_5 - a_6 - a_9} d(Ax_{2n-1}, Ax_{2n}, a).\]

Similarly we obtain by putting \(x = x_{2n+1}\) and \(y = x_{2n+2}\)

\[d(Ax_{2n+1}, Ax_{2n+2}, a) \leq \frac{a_1 + a_3 + a_5 + a_9}{1 - a_2 - a_3 - a_5 - a_6 - a_9} d(Ax_{2n}, Ax_{2n+1}, a).\]
Thus we have

$$(3.4.8) \quad d(Ax_{2n}, Ax_{2n+1}, a) \leq k \ d(Ax_{2n-1}, Ax_{2n}, a)$$

where

$$k = \frac{a_1 + a_3 + a_5 + a_9}{1 - a_2 - a_3 - a_5 - a_6 - a_9} \in (0, 1)$$

$$\leq k^2 \ d(Ax_{2n-2}, Ax_{2n-1}, a)$$

Proceeding in this manner, we get in the usual way \(\{Ax_n\} \) is a Cauchy sequence thus from \((3.4.5)\) \(Ax_{2n} \rightarrow z, Sx_{2n+1} \rightarrow z, \)

\(Tx_{2n+2} \rightarrow z \) and from \((3.4.6)\) \(ATx_{n_i} \rightarrow Az \) and \(TAx_{n_i} \rightarrow Tz \)

where \(\{n_i\} \) is a subsequence of \(\{n\} \). Since \(A \) and \(T \) are asymptotically commuting, therefore for \(a \) in \(X, \)

$$\lim_{n_i} d(ATx_{n_i}, TAx_{n_i}, a) = 0, \quad \forall n_i \$$

and due to continuity of \(d \) for each \(a \) in \(X, \)

$$d(Az, Tz, a) = 0$$

Hence,

$$Az = Tz$$

and similarly \(Az = Sz \).

By putting \(x = x_{2n} \) and \(y = z \) and taking limit in the hypothesis we write

$$d(z, Az, a) \leq \frac{k}{a} \ d(z, Az, a).$$

Thus \(Az = z \), \(z \) is the common fixed point of \(A, S, T \). It is easy to prove that \(z \) is unique.
3.5 Now we shall prove the following theorem:

THEOREM 3: Suppose \((X,d)\) is a 2-metric space where \(d\) is continuous. Let \(P,Q,T\) be self mapping on \(X\) and \(a, a_1(i = 1, 2, \ldots, 5)\) are real numbers such that

\[0 \leq a_1 + a_3 + a_5 < 1,\]

then for all \(x, y, a\) in \(X\) and

\[
\begin{align*}
(3.5.1) \quad & \min\{d(Px, Qy, a) + d(Tx, Ty, a)d(Px, Qy, a), \min\{d(Tx, Ty, a)d(Px, Qy, a), d(Ty, Qy, a)\}^2 \} \\
& \quad + a_1 d(Tx, Px, a)d(Ty, Qy, a) + a_2 d(Tx, Ty, a)d(Ty, Px, a) \\
& \quad + a_3 d(Ty, TPy, a)d(Tx, Ty, a) + a_4 d(Tx, TPy, a)d(Qy, TPy, a) \\
& \quad + a_5 d(Px, TPy, a)d(Tx, Ty),
\end{align*}
\]

\[
(3.5.2) \quad \text{For any point } x_0 \text{ in } X, \{x_n\} \text{ is such that } \\
Tx_{2n+1} = Px_{2n}, Tx_{2n+2} = Qx_{2n+1}, \\
Tx_{n+1} \neq Tx_{n+2}, \text{ for } n = 0, 1, 2, \ldots.
\]

\[
(3.5.3) \quad \text{any one sequence of } \{Tx_n\} \text{ converges to any point } z \text{ of } X;
\]

\[
(3.5.4) \quad \text{mappings } P, Q, T \text{ are continuous at point } z;
\]

\[
(3.5.5) \quad \text{the pairs } \{T, P\} \text{ and } \{T, Q\} \text{ are } z\text{-asymptotically commuting},
\]
then z is coincident point of the mapping P,Q,T i.e. $Pz = Qz = Tz$. Again if $\frac{k}{a} \in (0,1)$ then z is a unique fixed point of P,Q and T.

Proof: We put $x = x_{2n}$ and $y = x_{2n+1}$ in (3.5.1) and write

$$\min\{d(Tx_{2n+1}, Tx_{2n+2}, a)^2, d(Tx_{2n}, Tx_{2n+1}, a) d(Tx_{2n+1}, Tx_{2n+2}, a), \{d(Tx_{2n+1}, Tx_{2n+2}, a)^2 + a \min\{d(Tx_{2n}, Tx_{2n+1}, a) d(Tx_{2n+1}, Tx_{2n+2}, a)\}, d(Tx_{2n}, Tx_{2n+2}, a) d(Tx_{2n+1}, Tx_{2n+1}, a)\} \leq a_1 d(Tx_{2n}, Tx_{2n+1}, a) d(Tx_{2n+1}, Tx_{2n+2}, a) + a_2 d(Tx_{2n}, Tx_{2n+2}, a) d(Tx_{2n+1}, Tx_{2n+1}, a) + a_3 d(Tx_{2n+1}, Tx_{2n+2}, a) d(Tx_{2n}, Tx_{2n+1}, a) + a_4 d(Tx_{2n}, Tx_{2n+2}, a) d(Tx_{2n+2}, Tx_{2n+2}, a) + a_5 d(Tx_{2n+1}, Tx_{2n+2}, a) d(Tx_{2n}, Tx_{2n+1}, a) \leq (a_1 + a_3 + a_5) d(Tx_{2n}, Tx_{2n+1}, a) d(Tx_{2n+1}, Tx_{2n+2}, a)$
Since

\[d(T_{x2n}, T_{x2n+1}, a) d(T_{x2n+1}, T_{x2n+2}, a) \]

\[\leq (a_1 + a_3 + a_5) d(T_{x2n}, T_{x2n+1}, a) d(T_{x2n+1}, T_{x2n+2}, a) \]

is impossible, as \(a_1 + a_3 + a_5 < 1 \). Thus we have

\[[d(T_{x2n+1}, T_{x2n+2}, a)]^2 \]

\[\leq (a_1 + a_3 + a_5) d(T_{x2n}, T_{x2n+1}, a) d(T_{x2n+1}, T_{x2n+2}, a) \]

i.e.

\[(T_{x2n+1}, T_{x2n+2}, a) \leq (a_1 + a_3 + a_5) d(T_{x2n}, T_{x2n+1}, a) \]

The rest of the proof follows from theorem 1.
