Some of the symbols used:

\(\phi \)
Empty or null set

\(e \)
Belongs to

\(\notin \)
Does not belong to

\(= \)
Is equal to

\(\neq \)
Is not equal to

\(\Rightarrow \)
Implies

\(\leftrightarrow \)
Implies and implied by

\(\forall \)
If and only if

\(\exists \)
With respect to

\(\forall \)
For every

\(\exists \)
There exists

\(A \subseteq B \)
A is a subset of B

\(A \supseteq B \)
The complement of A w.r.t. X

\(X - A \cup \{ e(A) \} \)
A singleton set consisting of one element

\(\text{Cl}(A) \cup \bar{A} \)
The closure of the set A

\(\text{Cl}(A) \cup \bar{A} \)
The closure of A w.r.t. topology

\(\ell \)
A topology (with open elements)

\(\cup \)
Union

\(\cap \)
Intersection
A topology induced by the product topology.
CONTENTS

1) Preface - - - 1-v
2) Acknowledgement - - vi-vii
3) Some of the symbols used - - viii-x

CHAPTER I: A brief survey on separation axioms - 1-33

CHAPTER II: Nearly open sets - 34-44

CHAPTER III: Nearly continuous mappings - 45-51

CHAPTER IV: Nearly open mapping and a problem of Franklin - 52-69

CHAPTER V: Function with closed graphs and some other related results - 70-79

CHAPTER VI: Homeomorphisms with closed graphs -

CHAPTER VII: Coupling of topologies - 85-93

CHAPTER VIII: Localization of some separation axioms in topological and bitopological spaces - 94-103