CHAPTER II

RELATED FIXED POINT THEOREMS
ON TWO METRIC SPACES

(21 - 40)
CHAPTER II

RELATED FIXED POINT THEOREMS ON TWO
METRIC SPACES

2.1. S. Banach in 1922, established his famous fixed point theorem (1.1.1), popularly known as Banach's contraction theorem. Since then in next six decades there are a large number of research papers appeared which concerned the fixed point theorems of mappings defined from some space X to itself under various contractive conditions.

First time in 1981, B. Fisher established the concept of related fixed point theorem by taking two different complete metric spaces (X,d) and $(Y, ξ)$ and two mappings $T : (X,d) \rightarrow (Y, ξ)$, $S : (Y, ξ) \rightarrow (X,d)$ and he proved that - under certain contractive conditions the composite mapping ST has a unique fixed point in X and TS has a unique fixed point in Y.

The results of this chapter are likely to be published in the Kobe University Journal in co-authorship of Prof. B. Fisher. Preprint of the paper is enclosed in the appendix.
In 1981, B. Fisher [8] introduced the following related fixed point theorem on two metric spaces.

Theorem A: Let \((X, d)\) and \((Y, \varphi)\) be complete metric spaces. If \(T\) is a mapping of \(X\) into \(Y\) and \(S\) is a mapping of \(Y\) into \(X\) satisfying the inequalities:

\[\varphi(Tx, TSy) \leq c \max \{d(x, Sy), \varphi(y, Tx), \varphi(y, TSy)\},\]

\[(2.1.1)\]

\[d(Sy, STx) \leq c \max \{\varphi(y, Tx), d(x, Sy), d(x, STx)\},\]

\[(2.1.2)\]

for all \(x\) in \(X\) and \(y\) in \(Y\), where \(0 \leq c < 1\), then \(ST\) has a unique fixed point \(z\) in \(X\) and \(TS\) has a unique fixed point \(w\) in \(Y\). Further, \(Tz = w\) and \(Sw = z\).

Fisher [8] also proved an analogous result for compact metric spaces.

Theorem B: Let \((X, d)\) and \((Y, \varphi)\) be compact metric spaces. If \(T\) is a continuous mapping of \(X\) into \(Y\) and \(S\) is a continuous mapping of \(Y\) into \(X\) satisfying the inequalities:

\[\varphi(Tx, TSy) < \max \{d(x, Sy), \varphi(y, Tx), \varphi(y, TSy)\}\]

\[(2.1.3)\]

for all \(x\) in \(X\) and \(y\) in \(Y\) with \(x \neq Sy\) and

\[d(Sy, STx) < \max \{\varphi(y, Tx), d(x, Sy), d(x, STx)\}\]

\[(2.1.4)\]
for all \(x \) in \(X \) and \(y \) in \(Y \) with \(y \neq Tx \), then \(ST \) has a unique fixed point \(z \) in \(X \) and \(TS \) has a unique fixed point \(w \) in \(Y \). Further, \(Tz = w \) and \(Sw = z \).

Brain Fisher [9], in 1982, has proved another fixed point theorem on two metric spaces.

Theorem C: Let \((X, d)\) and \((Y, \rho)\) be complete metric spaces. If \(T \) is a continuous mapping of \(X \) into \(Y \) and \(S \) is a mapping of \(Y \) into \(X \) satisfying the following inequalities:

\[
(2.1.5) \quad d(STx, STx') \leq c \max \left\{ d(x, x'), d(x, STx), d(x', STx'), \rho(Tx, Tx') \right\}
\]

\[
(2.1.6) \quad \rho(TSy, TSy') \leq c \max \left\{ \rho(y, y'), \rho(y, TSy), \rho(y', TSy'), d(Sy, Sy') \right\}
\]

for all \(x, x' \) in \(X \) and \(y, y' \) in \(Y \), where \(0 \leq c < 1 \), then \(ST \) has a unique fixed point \(z \) in \(X \) and \(TS \) has a unique fixed point \(w \) in \(Y \). Further \(Tz = w \) and \(Sw = z \).

2.2: In this section, we prove new related fixed point theorems on two metric spaces which generalize the result of Fisher [9], Theorem C.
First, we prove that:

Theorem 1: Let \((X, d)\) and \((Y, \rho)\) be complete metric spaces. Let \(T\) be a mapping of \(X\) into \(Y\) and \(S\) be a mapping of \(Y\) into \(X\) satisfying the inequalities:

\[
(2.2.1) \quad d(Sy, Sy') \leq c \max \left\{ d(x, Sy') \rho(Tx', Ty), d(x', Sy) \rho(Tx, Ty'), d(x, x') d(Sy, Sy') \right\}
\]

\[
(2.2.2) \quad \rho(Tx, Tx') \leq c \max \left\{ d(x, Sy') \rho(Tx', Ty), d(x', Sy) \rho(Tx, Ty'), \rho(y, y') \rho(Tx, Tx'), \rho(Tx, Ty) \rho(Tx', Ty') \right\}
\]

for all \(x, x'\) in \(X\) and \(y, y'\) in \(Y\), where \(0 \leq c < 1\). If either \(T\) or \(S\) is continuous then \(ST\) has a unique fixed point \(z\) in \(X\) and \(TS\) has a unique fixed point \(w\) in \(Y\).

Further, \(Tz = w\) and \(Sw = z\).

Proof: For an arbitrary point \(x\) in \(X\). We define sequences \(\{x_n\}\) in \(X\) and \(\{y_n\}\) in \(Y\), by
\[(ST)^n x = x_n, \quad T(ST)^{n-1} x = y_n, \quad \text{for } n = 1, 2, 3, \ldots .\]

Applying inequality (2.2.1), we have

\[d(x_{n-1}, x_n) d(x_n, x_{n+1}) = d(Sy_{n-1}, Sy_n) d(STx_{n-1}, STx_n).\]

\[\leq c \max \left\{ d(x_{n-1}, Sy_n) \xi(Tx_n, TSy_{n-1}), \right.\]

\[d(x_n, Sy_{n-1}) \xi(Tx_{n-1}, TSy_n), \]

\[d(x_{n-1}, x_n) d(Sy_{n-1}, Sy_n), \]

\[d(Sy_{n-1}, STx_{n-1}) d(Sy_n, STx_n) \right\}\]

\[\leq c \max \left\{ d(x_{n-1}, x_n) \xi(y_n, y_{n+1}), \right.\]

\[d(x_{n-1}, x_n) \xi(y_n, y_{n+1}), \]

\[\left[d(x_{n-1}, x_n) \right]^2, \]

\[d(x_{n-1}, x_n) d(x_n, x_{n+1}) \right\},\]

from which it follows that

\[d(x_n, x_{n+1}) \leq c \max \left\{ \xi(y_n, y_{n+1}), d(x_{n-1}, x_n) \right\}.\]

By applying inequality (2.2.2), we get

\[\left[\xi(y_n, y_{n+1}) \right]^2 = \xi(Tx_{n-1}, Tx_n) \xi(TSy_{n-1}, TSy_n)\]

\[\leq c \max \left\{ d(x_{n-1}, Sy_n) \xi(Tx_n, TSy_{n-1}) \right\}.\]
\[d(x_n, S_{y_{n-1}}) \leq \xi(T_{x_{n-1}}, TS_{y_n}), \]
\[\xi(y_{n-1}, y_n) \leq \xi(T_{x_{n-1}}, T_{x_n}), \]
\[\xi(T_{x_{n-1}}, TS_{y_{n-1}}) \leq \xi(T_{x_n}, TS_{y_n}) \]

\[\leq c \max \left\{ d(x_{n-1}, x_n) \xi(y_n, y_{n+1}), \right. \]
\[d(x_n, x_{n-1}) \xi(y_n, y_{n+1}), \]
\[\xi(y_{n-1}, y_n) \xi(y_n, y_{n+1}), \]
\[\left. \xi(y_n, y_n) \xi(y_{n+1}, y_{n+1}) \right\} \]

\[\leq c \max \left\{ d(x_{n-1}, x_n) \xi(y_n, y_{n+1}), \right. \]
\[d(x_{n-1}, x_n) \xi(y_n, y_{n+1}), \]
\[\xi(y_{n-1}, y_n) \xi(y_n, y_{n+1}), \]
\[o \right\}, \]

from which it follows that
\[\xi(y_n, y_{n+1}) \leq c \max \left\{ d(x_{n-1}, x_n), \xi(y_{n-1}, y_n) \right\}. \]

It now follows easily by induction that
\[d(x_n, x_{n+1}) \leq c^n \max \{ d(x, x_1), \xi(y_1, y_2) \} \]
\[\xi(y_n, y_{n+1}) \leq c^{n-1} \max \{ d(x, x_1), \xi(y_1, y_2) \} , \]
for \(n = 1, 2, \ldots \). Since \(c < 1 \), it follows that \(\{ x_n \} \) and \(\{ y_n \} \) are Cauchy sequences with limit \(z \) in \(X \) and \(w \) in \(Y \).

Applying inequality (2.2.1) we have

\[
d(Sw, x_n) d(STz, x_{n+1}) = d(Sw, Sy_n) d(STz, STx_n) \\
\leq c \max \left\{ \begin{array}{c}
 d(z, Sy_n) \xi(Tx_n, TSw), \\
 d(x_n, Sw) \xi(Tz, TSy_n), \\
 d(z, x_n) d(Sw, Sy_n), \\
 d(Sw, STz) d(Sy_n, STx_n) \end{array} \right\} \\
\leq c \max \left\{ \begin{array}{c}
 d(z, x_n) \xi(y_{n+1}, TSw), \\
 d(x_n, Sw) \xi(Tz, y_{n+1}), \\
 d(z, x_n) d(Sw, x_n), \\
 d(Sw, STz) d(x_n, x_{n+1}) \end{array} \right\}.
\]

Letting \(n \) tend to infinity, we have

\[
d(Sw, z) d(STz, z) \leq c \max \left\{ \begin{array}{c}
 d(z, z) \xi(w, TSw), \\
 d(z, Sw) \xi(Tz, w), d(z, z) d(Sw, z), \\
 d(Sw, STz) d(z, z) \end{array} \right\} \\
\leq c \max \left\{ o, d(z, Sw) \xi(Tz, w), o, o \right\}.
\]
i.e. \(d(Sw, z) \leq d(STz, z) \leq c \cdot d(z, Sw) \cdot \ell(Tz, w) \)

and so either

\[Sw = z \]

or,

\[d(STz, z) \leq c \cdot \ell(Tz, w) \] \((1) \)

By applying inequality (2.2.2), we get

\[
\ell(Tz, y_{n+1}) \cdot \ell(TSw, y_{n+1}) = \ell(Tz, Tx_n) \cdot \ell(TSw, TSy_n) \\
\leq c \cdot \max \left\{ d(z, Sy_n) \cdot \ell(Tx_n, TSw), \right. \\
\left. d(x_n, Sw) \cdot \ell(Tz, TSy_n), \right. \\
\left. \ell(w, y_n) \cdot \ell(Tz, Tx_n), \right. \\
\left. \ell(Tz, TSw) \cdot \ell(Tx_n, TSy_n) \right\} \\
\leq c \cdot \max \left\{ d(z, x_n) \cdot \ell(y_{n+1}, TSw), \right. \\
\left. d(x_n, Sw) \cdot \ell(Tz, y_{n+1}), \right. \\
\left. \ell(w, y_n) \cdot \ell(Tz, y_{n+1}), \right. \\
\left. \ell(Tz, TSw) \cdot \ell(y_{n+1}, y_{n+1}) \right\}.
\]

Letting \(n \) tend to infinity, we get

\[\ell(Tz, w) \cdot \ell(TSw, w) \leq c \cdot d(z, Sw) \cdot \ell(Tz, w) \]

and so either

\[Tz = w \]
or
\[\epsilon(T_{Sw}, w) \leq c \, d(z, Sw). \] \hspace{1cm} (2)

If \(T \) is continuous, then

\[w = \lim_{n \to \infty} y_{n+1} = \lim_{n \to \infty} Tx_n = Tz \]

and therefore inequality (1) implies \(z = STz = Sw \),

\(T_{Sw} = Tz = w \).

If \(S \) is continuous, then

\[z = \lim_{n \to \infty} x_n = \lim_{n \to \infty} Sy_n = Sw, \]

and therefore inequality (2) implies \(w = T_{Sw} = Tz, \)

\(STz = Sw = z. \)

To prove uniqueness, let \(ST \) has another fixed point \(z' \) and \(TS \) has \(w' \). Then applying inequality (2.2.1) we have

\[d(z, Sw') \, d(z, z') = d(Sw, Sw') \, d(STz, STz') \]

\[\leq c \, \max \left\{ d(z, Sw') \, \epsilon(Tz', T_{Sw}), \right. \]

\[d(z', Sw) \, \epsilon(Tz, TSw'), \, d(z, z') \, d(Sw, Sw'), \]

\[\left. d(Sw, STz) \, d(Sw', STz') \right\} \]

\[\leq c \, \max \left\{ d(z, Sw') \, \epsilon(Tz', w), \right. \]

\[d(z', z) \, \epsilon(w, w'), \, d(z, z') \, d(z, Sw'), \]

\[\left. d(z', z) \, \epsilon(w, w'), \, d(z, z') \, d(z, Sw') \right\} \]
\[d(z, z) d(W, z') \leq c \max \left\{ d(z, Sw') \xi(Tz', w), d(z', z) \xi(w, w'), \right\} d(z, z') d(z, Sw'), o \right\}. \]

i.e. \[d(z, Sw') d(z, z') \leq c \max \left\{ d(z, Sw') \xi(Tz', w), \right\} d(z', z) \xi(w, w'), d(z, z') d(z, Sw'). \]

Then, we have either

\[d(z, Sw') d(z, z') \leq c d(z, Sw') \xi(Tz', w) \]

implies \[d(z, z') \leq c \xi(Tz', w) \tag{3} \]

Or \[d(z, Sw') d(z, z') \leq c d(z, z') \xi(w, w') \]

implies \[d(z, Sw') \leq c \xi(w, w') \tag{4} \]

Further, applying inequality (2.2.2) we have

\[\xi(w, Tz') \xi(w, w') = \xi(Tz, Tz') \xi(TSw, TSw') \leq c \max \left\{ d(z, Sw') \xi(Tz', TSw'), \right. \]

\[\left. d(z', Sw) \xi(Tz, TSw'), \xi(w', w) \xi(Tz, Tz'), \xi(Tz, TSw) \xi(Tz', TSw') \right\}. \]

\[\leq c \max \left\{ d(z, Sw') \xi(Tz', w), \right. \]

\[\left. d(z', Sw) \xi(Tz, TSw'), \xi(w', w) \xi(Tz, Tz'), \xi(Tz, TSw) \xi(Tz', TSw') \right\}. \]
\[d(z', z) \leq \xi(w, w') \leq \xi(w, w') \leq \xi(w, Tz') \leq \xi(w, Sw') \]

which implies, either

\[\xi(w, w') \leq c \ d(z, Sw') \quad (5) \]

or

\[\xi(w, Tz') \leq c \ d(z', z) \quad (6) \]

From (3) and (6), we have

\[d(z, z') \leq c \ \xi(Tz', w) \leq c^2 \ d(z', z), \]

which gives \(z' = z \), since \(c < 1 \). This shows \(ST \) has unique fixed point \(z \).

Now, \(TSw' = w' \) implies \(STSw' = Sw' \) and hence \(Sw' = z \). Thus, \(w = TSw = Tz = TSw' = w' \), which shows that \(TS \) has unique fixed point \(w \).

From inequalities (5) and (4), we have

\[\xi(w, w') \leq c \ d(z, Sw') \leq c^2 \ \xi(w, w'), \]

which gives \(w = w' \), since \(c < 1 \). This shows \(TS \) has unique fixed point \(w \).

Now, \(STz' = z' \implies TSTz' = Tz' \) and hence \(Tz' = w \).

Thus, \(z = STz = Sw = STz' = z' \), which shows that \(ST \) has unique fixed point \(z \). This completes the proof of the theorem.
COROLLARY 1: Let (X,d) be a complete metric space. If S and T are mappings of X into itself satisfying

$$
(2.2.3) \quad d(Sx, Sy) \leq c \max \left\{ d(x, Sy) d(Ty, TSx), d(y, Sx) d(Tx, TSy), d(x, y) d(Sx, Sy), d(Sx, STx) d(Sy, STy) \right\}
$$

$$
(2.2.4) \quad d(Tx, Ty) d(TSx, TSy) \leq c \max \left\{ d(x, Sy) d(Ty, TSx), d(y, Sx) d(Tx, TSy), d(x, y) d(Tx, Ty), d(Tx, TSx) d(Ty, TSy) \right\}
$$

For all x, y in X, $0 \leq c < 1$. If either T or S is continuous then ST has a unique fixed point z and TS has a unique fixed point w in X. Further $Tz = w$ and $Sw = z$.

Now, we prove the following theorem:

THEOREM 2: Let (X,d) and (Y, ρ) be complete metric spaces. If T is a continuous mapping of X into Y and S is a mapping of Y into X satisfying the inequalities:

$$
(2.2.5) \quad d(STx, STx') \leq \frac{c f(x, x', y, y')}{f_1(x, x', y, y')}
$$

\[(2.2.6) \quad \zeta(Ty, Ty') \leq \frac{c \cdot g(x, x', y, y')}{{g}_1(x, x', y, y')}\]

for all \(x, x'\) in \(X\) and \(y, y'\) in \(Y\) for which

\[f_1(x, x', y, y') \neq 0 \neq g_1(x, x', y, y')\]

where

\[f(x, x', y, y') = \max \left\{ d(x, x') \cdot \zeta(Tx, Tx'), \right.\]
\[d(x, TSx) \cdot \zeta(Tx, Tx'), \]
\[d(x', STx) \cdot \zeta(Tx, Tx') \left. \right\}\]

\[g(x, x', y, y') = \max \left\{ \zeta(y, y') \cdot d(Sy, Sy'), \right.\]
\[\zeta(y', Ty') \cdot d(Sy, Sy'), \]
\[\zeta(y', Ty) \cdot d(Sy, Sy') \left. \right\}\]

\[f_1(x, x', y, y') = \max \left\{ \zeta(Tx, Tx'), d(x, STx), d(x', STx) \right\}\]

\[g_1(x, x', y, y') = \max \left\{ d(Sy, Sy'), \zeta(y, Ty'), \zeta(y', Tsy) \right\}\]

and \(0 \leq c < 1\), then \(ST\) has a unique fixed point \(z\) in \(X\) and \(TS\) has a unique fixed point \(w\) in \(Y\). Further, \(Tz = w\) and \(Sw = z\).

Proof: Define the sequences \(\{x_n\}\) in \(X\) and \(\{y_n\}\) in \(Y\) as in the proof of theorem 1.
We will assume that \(x_n \neq x_{n+1} \) and \(y_n \neq y_{n+1} \) for all \(n \), otherwise, if \(x_n = x_{n+1} \) and \(y_n = y_{n+1} \) for some \(n \), we could put \(x_n = z \) and \(y_n = w \). By applying inequality (2.2.5) we get

\[
d(x_n, x_{n+1}) = d(STx_{n-1}, STx_n)
\]

\[
c \max \left\{ d(x_{n-1}, x_n), \varepsilon(Tx_{n-1}, Tx_n), d(x_{n-1}, STx_{n-1}), \varepsilon(Tx_{n-1}, Tx_n), d(x_n, STx_{n-1}), \varepsilon(Tx_{n-1}, Tx_n) \right\} \leq \max \left\{ \varepsilon(Tx_{n-1}, Tx_n), d(x_{n-1}, STx_{n-1}), d(x_n, STx_{n-1}) \right\}
\]

\[
c \max \left\{ d(x_{n-1}, x_n)\varepsilon(y_n, y_{n+1}), d(x_{n-1}, x_n) \right\} \leq \max \left\{ \varepsilon(y_n, y_{n+1}), d(x_{n-1}, x_n), d(x_n, x_n) \right\}
\]

\[
c \max \left\{ d(x_{n-1}, x_n) \varepsilon(y_n, y_{n+1}), d(x_{n-1}, x_n) \right\} \leq \max \left\{ \varepsilon(y_n, y_{n+1}), d(x_{n-1}, x_n), d(x_n, x_n) \right\}
\]
\[d(x_n, x_{n+1}) \leq \frac{c \cdot d(x_{n-1}, x_n) \cdot \xi(y_n, y_{n+1})}{\max \{ \xi(y_n, y_{n+1}), d(x_{n-1}, x_n) \}} \]

From which, it follows that

\[d(x_n, x_{n+1}) \leq c \cdot \xi(y_n, y_{n+1}) \quad \text{(i)} \]

or

\[d(x_n, x_{n+1}) \leq c \cdot d(x_{n-1}, x_n) \quad \text{(ii)} \]

By applying inequality (2.2.6) we get

\[\xi(y_n, y_{n+1}) = \xi(TS_{y_{n-1}}, TS_{y_n}) \]

\[\leq \frac{c \cdot \max \{ \xi(y_{n-1}, y_n), \xi(y_n, TS_{y_n}) \cdot d(Sy_{n-1}, Sy_n), \xi(y_n, TS_{y_{n-1}}) \cdot d(Sy_{n-1}, Sy_n) \}}{\max \{ d(x_{n-1}, x_n), \xi(y_n, y_{n+1}) \}} \]

\[\leq \frac{c \cdot \max \{ \xi(y_{n-1}, y_n) \cdot d(x_{n-1}, x_n), \xi(y_n, y_{n+1}) \cdot d(x_{n-1}, x_n), \xi(y_n, y_n) \cdot d(x_{n-1}, x_n) \}}{\max \{ d(x_{n-1}, x_n), \xi(y_n, y_{n+1}) \}} \]

\[\leq \frac{c \cdot \max \{ \xi(y_{n-1}, y_n) \cdot d(x_{n-1}, x_n), \xi(y_n, y_{n+1}) \cdot d(x_{n-1}, x_n) \}}{\max \{ d(x_{n-1}, x_n), \xi(y_n, y_{n+1}) \}} \]

\[\leq \frac{\xi(y_n, y_{n+1}) \cdot d(x_{n-1}, x_n)}{\max \{ d(x_{n-1}, x_n), \xi(y_n, y_{n+1}) \}} \]

\[\leq \frac{\xi(y_n, y_{n+1}) \cdot d(x_{n-1}, x_n)}{\max \{ d(x_{n-1}, x_n), \xi(y_n, y_{n+1}) \}} \]

\[\leq \frac{\xi(y_n, y_{n+1}) \cdot d(x_{n-1}, x_n)}{\max \{ d(x_{n-1}, x_n), \xi(y_n, y_{n+1}) \}} \]

\[\leq \frac{\xi(y_n, y_{n+1}) \cdot d(x_{n-1}, x_n)}{\max \{ d(x_{n-1}, x_n), \xi(y_n, y_{n+1}) \}} \]
From which it follows that

\[d(y_n, y_{n+1}) \leq c d(y_{n-1}, y_n) \quad (iii) \]

or

\[d(y_n, y_{n+1}) \leq c \, d(x_{n-1}, x_n) \quad (iv). \]

By using inequalities (i) and (iii), we get

\[
d(x_n, x_{n+1}) \leq c \, d(y_n, y_{n+1}) \leq c^2 \, d(y_{n-1}, y_n) \leq \ldots \leq c^n \, d(y_1, y_2).
\]

By using inequalities (i) and (iv) we get

\[
d(x_n, x_{n+1}) \leq c \, d(y_n, y_{n+1}) \leq c^2 d(x_{n-1}, x_n) \leq c^3 d(y_{n-1}, y_n) \leq \ldots \leq c^{2n-1} \, d(y_1, y_2) \leq c^{2n} \, d(x, x_1).
\]

From inequality (ii), we have

\[
d(x_n, x_{n+1}) \leq c d(x_{n-1}, x_n) \leq \ldots \leq c^n \, d(x, x_1).
\]

Since \(c < 1 \), from above it follows that in each case \(\{x_n\} \)

is a Cauchy sequence with limit \(z \) in \(X \).

Similarly, by using inequalities (iv) and (i), we have

\[d(y_n, y_{n+1}) \leq c^{2n-1} \, d(x, x_1) \leq c^{2n} \, d(y, y_1). \]

From inequalities (iv) and (ii), we get

\[d(y_n, y_{n+1}) \leq c^n \, d(x, x_1), \]
and from inequality (iii), we have

\[\varrho(y_n, y_{n+1}) \leq c^n \varrho(y, y_1). \]

Since \(c < 1 \), from above it follows that in each case \(\{ y_n \} \)
is a Cauchy sequence with limit \(w \) in \(y \).

Using the continuity of \(T \) we have

\[w = \lim_{n \to \infty} y_{n+1} = \lim_{n \to \infty} T x_n = T z \quad (v) \]

Now using the inequality (2.2.5) and the assumption that \(STz \neq z \), we get

\[d(S T z, x_n) = d(S T z, S T x_{n-1}) \]

\[\leq \frac{c \max \left\{ d(z, x_{n-1}) \varrho(T z, T x_{n-1}), d(z, S T z) \varrho(T z, T x_{n-1}), \\
\quad d(x_{n-1}, S T z) \varrho(T z, T x_{n-1}) \right\}}{\max \left\{ \varrho(T z, T x_{n-1}), d(z, S T z), d(x_{n-1}, S T z) \right\}} \]

\[\leq \frac{c \max \left\{ d(z, x_{n-1}) \varrho(T z, y_n), d(z, S T z) \varrho(T z, y_n), \\
\quad d(x_{n-1}, S T z) \varrho(T z, y_n) \right\}}{\max \left\{ \varrho(T z, y_n), d(z, S T z), d(x_{n-1}, S T z) \right\}} \]

Letting \(n \) tend to infinity, we get
\[d(STz, z) \leq \frac{c \cdot d(z, STz) \cdot \xi(Tz, w)}{\max \{ \xi(Tz, w), d(z, STz) \} } \]

Then we have either,

\[d(STz, z) \cdot \xi(Tz, w) \leq c \cdot d(z, STz) \cdot \xi(Tz, w) \]

gives \(c \geq 1 \), a contradiction.

Or

\[[d(STz, z)]^2 \leq c \cdot d(z, STz) \cdot \xi(Tz, w) \]

implies \(d(STz, z) \leq c \cdot \xi(Tz, w) = 0 \ldots \) by (v).

Thus \(STz = z \) and hence \(z = STz = Sw \), \(TSW = Tz = w \).

To prove uniqueness, let \(z' \) be another fixed point of \(ST \),
then by using inequality (2.2.5) we have

\[d(z, z') = d(STz, STz') \]

\[
\leq \frac{c \max \{ d(z, z') \cdot \xi(Tz, Tz'), d(z, STz) \cdot \xi(Tz, Tz') \}}{\max \{ \xi(Tz, Tz'), d(z, STz), d(z', STz) \}}
\]

\[
\leq \frac{c \max \{ d(z, z') \cdot \xi(Tz, Tz'), d(z', z) \cdot \xi(Tz, Tz') \}}{\max \{ \xi(Tz, Tz'), d(z', z) \}}
\]

\[
\leq \frac{c \cdot \xi(Tz, Tz') \cdot d(z, z')}{\max \{ \xi(Tz, Tz'), d(z, z') \}}
\]
which gives either

\[d(z, z') \leq c \, d(z, z') \leq c \, \varepsilon(Tz, Tz'), \]

a contradiction, since \(c < 1 \).

or

\[d(z, z') \leq c \, \varepsilon(Tz, Tz') \quad \text{(vi)} \]

Now, using inequality (2.2.6) we get

\[\varepsilon(Tz, Tz') = \varepsilon(TSTz, TSTz') \]

\[\leq c \, \max \left\{ \varepsilon(Tz, Tz') \, d(STz, STz'), \right. \]

\[\left. \varepsilon(Tz', TSTz') \, d(STz, STz'), \right\} \]

\[\leq \frac{\varepsilon(Tz', TSTz) \, d(STz', STz') \left\{ \right.}{\max \left\{ d(STz, STz'), \varepsilon(Tz', TSTz'), \varepsilon(Tz', TSTz) \right\}} \]

\[\leq \frac{c \, \max \left\{ \varepsilon(Tz, Tz') \, d(z, z'), 0, \varepsilon(Tz', Tz) \right\} \, d(z, z')}{\max \left\{ d(z, z'), 0, \varepsilon(Tz', Tz) \right\}} \]

i.e.

\[(Tz, Tz') \leq \frac{c \, \varepsilon(Tz, Tz') \, d(z, z')}{\max \left\{ d(z, z'), \varepsilon(Tz', Tz) \right\}} \]

implies

\[\varepsilon(Tz, Tz') \leq c \, d(z, z') \quad \text{(vii)} \]

On applying the inequalities (vi) and (vii) we have

\[d(z, z') \leq c \, \varepsilon(Tz, Tz') \leq c^2 \, d(z, z') \]
gives \(z' = z \) since \(c < 1 \). This shows that \(ST \) has unique fixed point \(z \). Let \(TS \) has another fixed point \(w' \), then \(TSw' = w' \implies STSw' = Sw' \) and hence \(Sw' = z \). Thus \(w = TSw = Tz = TSw' = w' \), shows that \(TS \) has unique fixed point \(w \).

This completes the proof of the theorem.