1.6.3 Markov chain
 1.6.3.1 Transition probability matrix 24
 1.6.3.2 Order of Markov chain 25
 1.6.3.3 Classification of Markov chains and states 25 - 26

1.7.0 Review of literature 26 - 34
1.8.0 Work done in subsequent chapters 35 - 38

2. MARKOV CHAIN MODEL FOR TRAFFIC SHARING IN COMPUTER NETWORKS 39 - 62
 2.1.1 Introduction 39 - 41
 2.2.1 Markov chain model 41
 2.2.2 Assumptions in model for sharing internet 42
 2.2.3 Transition mechanism in model and probabilities 42 - 44
 2.2.4 Markov chain transition probability matrix 44 - 45
 2.2.5 Probabilities of attempts 45 - 47
 2.3.0 Quality of service (QoS) 47 - 48
 2.3.1 Comparison of faithful and impatient user 48 - 50
 2.3.2 Traffic sharing 50 - 55
 2.3.3 Limiting behaviour 55
 2.3.4 Error at nth attempt 55 - 56
 2.3.5 Minimum number of attempts 56 - 57
 2.3.6 p as a function of L_1, L_2 and \overline{P}_1 (or \overline{P}_2) 57 - 59
 2.3.7 Share loss 59 - 60
 2.4.0 Case of more than two operators 61 - 62
 2.5.0 Conclusions 62

3. MARKOV CHAIN MODEL FOR TWO ELEMENTS CIRCUIT SWITCHING IN A COMPUTER NETWORK 63 - 100
 3.1.0 Introduction 63 - 64
 3.1.1 Two-elements switch configuration 65
 3.2.0 Markov chain model 65 - 66
 3.3.0 Reaching probabilities to $O(K, L)$ 66 - 68
 3.4.0 Probability of connectivity to stage 1 68 - 70
 3.5.0 Probability of loss 70 - 72
4. A STOCHASTIC MODEL FOR SPACE-DIVISION SWITCHES IN COMPUTER NETWORKS

4.1.0 Introduction
 4.1.1 A Review
 4.1.2 Assumptions
4.2.0 Markov chain model
 4.2.1 Model classification
4.3.0 Calculation of reaching probabilities
 4.3.1 Outgoing probabilities at stage 1
 4.3.2 Outgoing probabilities at stage 2
 4.3.3 Outgoing probabilities at stage 3
4.4.0 Simulation study under
 \(K \) – dependent model
 4.4.1 Reaching probabilities over stages
 4.4.2 Comparison over \(K \) in
 \(K \) – dependent model
4.4.3 Simulation study under
 \(L \) – dependent model
 4.4.3.1 Effect of \(L \) and \(D \)
 4.4.3.2 Effect of variation of \(c, d \) and \(K \)
 4.4.3.3 Effect of variation of \(a, c, d \) and \(L \)
 4.4.3.4 Comparison over \(K \) in
 \(L \) – dependent model
4.5.0 Conclusions

5. STOCHASTIC MODEL FOR CELL MOVEMENT IN A KNOCKOUT SWITCH IN COMPUTER NETWORKS

5.1.0 Introduction
5.1.1 A Review

5.2.0 Markov chain model and assumptions
5.2.1 Computation of reaching probabilities under unicasting

5.3.0 Probability of discarding in unicasting

5.4.0 Reaching probabilities under multicasting

5.5.0 Step-dependent reaching probabilities under multicasting

5.6.0 Expected number of transitions under multicasting

5.7.0 Simulation study
5.7.0.1 Data description
5.7.0.2 Computation of probability
5.7.0.3 Calculations under multicasting

5.8.0 Conclusions

6. MODIFIED STRUCTURE OF MQSR

PROTOCOL FOR WIRELESS NETWORK

WITH MULTI PACKET RECEPTION

6.1.0 Introduction

6.2.0 Modified MQSR protocol
6.2.1 Mathematical form of protocol
6.2.2 Probability distribution of users accessing the channel
6.2.3 Condition for automatic selection of users for queue

6.3.0 Conclusions

REFERENCES

APPENDIX-A

APPENDIX-B