Contents

<table>
<thead>
<tr>
<th>List of Abbreviations</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Chapter 1: Introduction

Chapter 1A: Conformations and Solvolysis of Toxic Organophosphorus Compounds 1-27

Chapter 1B: Habit Modification of Ionic Solids with Organic Impurities 28-45

Chapter 2: Conformational Study and Degradation of OP Nerve Agents via Solvolysis Processes 46-103

Chapter 2.1: Probing the Simulant Behavior of PNPDP towards Parathion and Paraoxon: A Computational Study 46-63

2.1.1. Introduction 46

2.1.2. Computational Methods 47

2.1.3. Results and Discussion 50

2.1.3.1. Alkaline Hydrolysis of Paraoxon 53

2.1.3.2. Alkaline Hydrolysis of Parathion 56

2.1.3.3. Alkaline Hydrolysis of PNPDP 57

2.1.4. Conclusion 60

References 60

Chapter 2.2: Remarkable Effect of Hydroxylamine Anion towards the Solvolysis of Sarin: A DFT Study 64-77

2.2.1. Introduction 64

2.2.2. Computational Methods 65

2.2.3. Results and Discussion 67

2.2.4. Conclusion 75

References 75

Chapter 2.3: Solvolysis Process of Organophosphorus Compound P-[2-(dimethylamino)ethyl]-N,N-dimethylphosphonamidic Fluoride with Simple and α-nucleophiles: A DFT Study 78-103

2.3.1. Introduction 78

2.3.2. Computational Methods 79

2.3.3. Results and Discussion 82

2.3.3.1. Alkaline Hydrolysis 84

2.3.3.2. Hydroperoxidolysis 89

2.3.3.3. Solvolysis Process with Hydroxylamine Anion 91

2.3.4. Conclusion 99

References 100
Chapter 3: Conformational Study and Degradation of Chemical Warfare Agent VX Before and After Inhibiting AChE

Chapter 3.1: Solvolysis of Chemical Warfare Agent VX is More Efficient with Hydroxylamine Anion: A Computational Study

3.1.1. Introduction 104
3.1.2. Computational Methods 105
3.1.3. Results and Discussion 106
3.1.4. Conclusion 114
References 114

Chapter 3.2: Assessing the Reactivation Efficacy of Hydroxylamine Anion with VX-Inhibited AChE: A Computational Study

3.2.1. Introduction 117
3.2.2. Computational Methods 118
3.2.3. Results and Discussion 119
3.2.3.1. Conformational Analysis 119
3.2.3.2. Reactivation with Formoximate Anion 121
3.2.3.3. Reactivation with Hydroxylamine Anion 124
3.2.4. Conclusion 129
References 129

Chapter 4: Computational and Experimental Studies towards Habit Modification of Rock Salt Crystals in Presence of Organic Additives

Chapter 4.1: Probing the Influence of pH Dependent Citric Acid towards the Morphology of Rock Salt: A Computational Study

4.1.1. Introduction 132
4.1.2. Computational Methods 133
4.1.3. Results and Discussion 135
4.1.3.1. Conformational Analyses of Citric Acid and its Three Dissociated Forms 135
4.1.3.2. Composition Analysis of Citric Acid and its Dissociated Forms at Different pH 143
4.1.3.3. Determination of Composition of Polyprotic Acid as a Function of pH 145
4.1.3.4. Molecular Electrostatic Potential (MESP) Analysis of Citric Acid and its Dissociated Forms 145
4.1.3.5. Interaction of Citric Acid and Dihydrogen Citrate with NaCl 148
4.1.4. Conclusion 150
References 150

Chapter 4.2: Can Nitrilotriacetic Acid (NTA) Act as a Habit Modifier for Rock Salt Crystals? An Answer from Computational and Experimental Studies
4.2.1. Introduction 154