LIST OF FIGURES

Figure 1 Synthesized biogenic silver nanoparticles observed strongly in the range of 400 - 450 nm in the visible region in UV spectra

Figure 2 UV spectrum of biogenic silver nanoparticles formed at characteristic wavelength at 422 nm with increase in wavelength at regular time intervals

Figure 3 Fourier Transform Infrared spectrum of biogenic silver nanoparticles

Figure 4 X-Ray Diffraction pattern of biogenic silver nanoparticles showing characteristics peaks centered indexed to the crystalline planes (111), (200) and (220) of face centred cubic silver

Figure 5 Energy Dispersive Spectrum of biogenic silver nanoparticles revealed the presence of high amount of silver

Figure 6 UV spectrum of optimization of biogenic silver nanoparticles under different pH

Figure 7 UV spectrum of optimization of biogenic silver nanoparticles at different incubation timings

Figure 8 UV spectrum of optimization of biogenic silver nanoparticles at different temperatures

Figure 9 UV spectrum of optimization of biogenic silver nanoparticles at different concentrations of silver nitrate solution

Figure 10 UV spectrum of optimization of biogenic silver nanoparticles at different concentration ratios of plant rhizome extract and silver nitrate

Figure 11 Change in membrane permeability of bacterial cells under 10 μg/ mL concentration of biogenic silver nanoparticles and silver nitrate treatment

Figure 12 Respiration activity of Staphylococcus aureus under 10 μg/ mL concentration of biogenic silver nanoparticles and silver nitrate treatment

Figure 13 Growth curves of Staphylococcus aureus bacterial cells exposed to 10 μg/ mL concentration of biogenic silver nanoparticles and silver nitrate

Figure 14 Growth curves of Escherichia coli bacterial cells exposed to 10 μg/ mL concentration of biogenic silver nanoparticles and silver nitrate
List of Figures

Figure 15 Effect of 10 μg/mL concentration of biogenic silver nanoparticles and silver nitrate on protein leakage from bacterial cell membranes

Figure 16 Minimum inhibitory concentrations (MIC) of bacterial cells exposed to different concentrations of biogenic silver nanoparticles

Figure 17 Minimum inhibitory concentrations (MIC) of bacterial cells exposed to different concentrations of silver nitrate

Figure 18 UV spectrum showing no detection of biogenic silver nanoparticles in ISO artificial sweat formulation (pH 5.5) due to the absence of absorbance peak of 390 to 450 nm which is characteristic region of silver

Figure 19 Fourier Transform Infrared Spectra analysis of untreated fabric and biogenic silver nanoparticles treated fabric

Figure 20 Energy Dispersive Spectrum of fabric treated with biogenic silver nanoparticles showing the presence of high amounts of silver

Figure 21 UV spectra showing the photocatalytic degradation of commercial dye effluent using biogenic silver nanoparticles in 60 minutes

Figure 22 UV spectra showing the photocatalytic degradation of Brown Direct dye using biogenic silver nanoparticles in 60 minutes

Figure 23 UV spectra showing the photocatalytic degradation of Procion Fuchsia MX-8B dye using biogenic silver nanoparticles in 60 minutes

Figure 24 UV spectra showing the photocatalytic degradation of Procion Navy Blue MX-2G dye using biogenic silver nanoparticles in 60 minutes

Figure 25 UV spectra showing the photocatalytic degradation of Reactive Orange 16 dye using biogenic silver nanoparticles in 60 minutes

Figure 26 UV spectra showing the photocatalytic degradation of Reactive Yellow 17 dye using biogenic silver nanoparticles in 60 minutes

Figure 27 UV spectra showing the photocatalytic degradation of Procion Bright Turquoise MX-G dye using biogenic silver nanoparticles in 60 minutes

Figure 28 Reduction in BOD and COD levels in commercial textile dye effluent after photocatalytic degradation using biogenic silver nanoparticles with in 60 minutes

Figure 29 Swelling studies in biogenic AgNP beads and Simple beads
Figure 30 Fourier Transform Infrared analysis of biogenic AgNP beads and Simple beads before and after treating aerobic sludge

Figure 31 Seed Germination in *Trigonella foenumgraecum* Linn. seedlings under various concentrations of biogenic silver nanoparticles and silver nitrate

Figure 32 Germination Index (%) on day 2 and day 4 in *Trigonella foenumgraecum* Linn. seedlings under various treatments

Figure 33 Effects on plant height under various treatments for 120 days

Figure 34 Effects on plant weight under various treatments for 120 days

Figure 35 Effects on total number of leaves under various treatments for 100 days

Figure 36 Effects on total number of flowers under various treatments for 80 days

Figure 37 Effects on total number of pods under various treatments for 110 days

Figure 38 Total Protein in plant leaves over a period of 90 days under various treatments

Figure 39 Total Protein in plant stem over a period of 90 days under various treatments

Figure 40 Total Protein in plant roots over a period of 90 days under various treatments

Figure 41 Total Carbohydrates in plant leaves over a period of 90 days under various treatments

Figure 42 Total Carbohydrates in plant stem over a period of 90 days under various treatments

Figure 43 Total Carbohydrates in plant roots over a period of 90 days under various treatments

Figure 44 Total Phenol in plant leaves over a period of 90 days under various treatments

Figure 45 Total Phenol in plant stem over a period of 90 days under various treatments

Figure 46 Total Phenol in plant roots over a period of 90 days under various treatments

Figure 47 Total Flavonoids in plant leaves over a period of 90 days under various treatments
Figure 48 Total Flavonoids in plant stem over a period of 90 days under various treatments
Figure 49 Total Flavonoids in plant roots over a period of 90 days under various treatments
Figure 50 Total Chlorophyll in plant leaves over a period of 90 days under various treatments
Figure 51 Proline in plant over a period of 90 days under various treatments
Figure 52 Catalase activity in plant leaves over a period of 90 days under various treatments
Figure 53 Catalase activity in plant stem over a period of 90 days under various treatments
Figure 54 Catalase activity in plant roots over a period of 90 days under various treatments
Figure 55 Peroxidase activity in plant leaves over a period of 90 days under various treatments
Figure 56 Peroxidase activity in plant stem over a period of 90 days under various treatments
Figure 57 Peroxidase activity in plant roots over a period of 90 days under various treatments
Figure 58 Superoxide Dismutase activity in plant leaves over a period of 90 days under various treatments
Figure 59 Superoxide Dismutase activity in plant stem over a period of 90 days under various treatments
Figure 60 Superoxide Dismutase activity in plant roots over a period of 90 days under various treatments
Figure 61 Ascorbate Peroxidase activity in plant leaves over a period of 90 days under various treatments
Figure 62 Ascorbate Peroxidase activity in plant stem over a period of 90 days under various treatments
Figure 63 Ascorbate Peroxidase activity in plant roots over a period of 90 days under various treatments