CONTENTS

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>List of Figures</td>
</tr>
<tr>
<td></td>
<td>List of Tables</td>
</tr>
</tbody>
</table>

CHAPTER - 1 Introduction
1.1 Background 1
1.2 Defect detection approaches 2
1.3 Motivation 4
1.4 Statement of the problem 5
1.5 Objectives 5
1.6 Proposed methodology 6
1.7 Contributions 7
1.8 Organization of the thesis 8

CHAPTER - 2 Literature review and state of the art 10
2.1 Preamble 10
2.2 Wallpaper groups 10
2.3 Periodicity extraction 14
 2.3.1 Overview of methods of periodicity extraction 14
 2.3.2 Scope for periodicity extraction 17
2.4 Defect detection through periodicity extraction 17
 2.4.1 Overview of methods of defect detection through periodicity extraction 17
 2.4.2 Scope for defect detection 23
2.5 Formulation of the research problem 23
2.6 Conclusion 23

CHAPTER - 3 Proposed DMF based method for automatic periodicity extraction 24
3.1 Introduction 24
3.2 Distance matching function 24
 3.2.1 DMF for synthetic texture image 26
 3.2.2 DMF for natural texture image 26
3.3 Proposed method for periodicity extraction with illustration 27
3.4 Validation and comparative analysis 33
3.5 Experimental analysis with wallpaper groups 36
3.6 Conclusion 38
CHAPTER - 4 Some approaches for defect detection through periodicity extraction

4.1 Introduction 39
4.2 Database of test images 40
4.3 Defect detection methods based on Human Vision Perception (HVP) 91
 4.3.1 Gabor wavelet based method 92
 4.3.1.1 Introduction 92
 4.3.1.2 Proposed method 95
 4.3.1.3 Illustration of the proposed method 96
 4.3.1.4 Experimental analysis 100
 4.3.1.5 Conclusion 102
 4.3.2 HVP contrast based method 102
 4.3.2.1 Introduction 102
 4.3.2.2 Proposed method 106
 4.3.2.3 Illustration of the proposed method 106
 4.3.2.4 Experimental analysis 109
 4.3.2.5 Conclusion 109
 4.4 Defect detection methods based on non-HVP 110
 4.4.1 Chi-square distance based method 111
 4.4.1.1 Introduction 111
 4.4.1.2 Proposed method 111
 4.4.1.3 Illustration of the proposed method 112
 4.4.1.4 Experimental analysis 114
 4.4.1.5 Conclusion 115
 4.4.2 Jensen-Shannon divergence based method 115
 4.4.2.1 Introduction 115
 4.4.2.2 Proposed method 116
 4.4.2.3 Illustration of the proposed method 117
 4.4.2.4 Experimental analysis 119
 4.4.2.5 Conclusion 120
 4.4.3 Universal quality index based method 120
 4.4.3.1 Introduction 120
 4.4.3.2 Proposed method 121
 4.4.3.3 Illustration of the proposed method 124
 4.4.3.4 Experimental analysis 127
 4.4.3.5 Conclusion 128
 4.5 Overall comparative analysis 128
 4.5.1 Comparative analysis on performance of all defect detection methods 128
 4.5.2 Comparative analysis on computational time for all defect detection methods 136
 4.6 Conclusion 143
<table>
<thead>
<tr>
<th>CHAPTER - 5</th>
<th>Summary and future scope of research</th>
<th>145</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Summary</td>
<td>145</td>
</tr>
<tr>
<td>5.2</td>
<td>Future scope of research</td>
<td>146</td>
</tr>
</tbody>
</table>

Appendix – I Defect fusion on images used for demonstration of defect detection methods 147

List of Publications 152

References 159