LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig.No.</th>
<th>Figure Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Vistex Database: Bark.0000, Bark.0001, Bark.0002, Bark.0003, Bark.0004, Bark.0005,</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Bark.0006, Bark.0007, Bark.0009, Bark.0010; Brick.0000, Brick.0001, Brick.0002,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brick.0003, Brick.0004, Brick.0005, Brick.0006, Brick.0007, Brick.0008, Brick.0009,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brick.0010; Leaves.0000, Leaves.0001, Leaves.0002, Leaves.0003, Leaves.0004,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leaves.0005, Leaves.0006, Leaves.0007, Leaves.0008, Leaves.0009, Leaves.0010,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fabric.0000, Fabric.0003, Fabric.0005, Fabric.0006, Fabric.0007, Stone.0000,</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Google Database: Brick-erosion, Granite5, Granite7, Granite10, Monza, Blue-topaz,</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Pietro-nero, Mesa-twilight, Interlude_Haze, Ebony-oxide, Leaves1, Leaves2, Leaves3,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leaves4, Leaves5, Leaves6, Leaves7, Leaves8, Leaves9, Leaves10, Marble03, Marble14,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marble17, Marble18, Marble20, Marble23, Marble28, Marble40, Gold Marble, Canyon-Blue,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock31, NZRiver1, Small-stones, Stone7, Stone39, Counterpoint, Stannic Crater,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stone16.</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Representation of texture elements.</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Fuzzy texture number (Base-5) representation.</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>(a) Original subimage (b) Representation of fuzzy texture elements (c) Evaluate FTU.</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>(a) Representation of 4-patterns of LTU.</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>(b) Representation of 4-patterns of RTU.</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>(a) Four possible patterns for each LTU (b) Four possible patterns for each RTU.</td>
<td>22</td>
</tr>
</tbody>
</table>
2.6 (a) & (b) Frequency occurrences of LTU and RTU
(c) LRTUM matrix.
2.7 Comparative analysis of OTS and LRTUM.
3.1 Integrated framework for texture classification using
ILCLBP-T.
3.2 Four special types of textons a) 2×2 grid b) T₁ c) T₂
d) T₃ and e) T₄.
3.3 Illustration of the Texton detection process: (a) 2×2
grid (b) Original image (c) & (d)Texton location and
texton types (e) Texton image.
3.4 Representation of LBP.
3.5 Transformation from LBP to ILCLBP-T: a) a 3×3 LBP
mask b) a 2×2 ILCLBP-T mask.
3.6 An example of evaluating ILCLBP-T unit using
relative position of LBP: a) a 3×3 LBP mask b) a 2×2
ILCLBP-T mask c) Obtained Pattern d) Minimum
4-bit valued pattern.
3.7 Kirsch edge response masks in eight directions.
3.8 Stability of LDP vs. LBP (a) Original image (b) Image
with noise.
3.9 Representation of MPP-1g.
3.10 Representation of MPP-2g by fixing one of the grain
component at (0,0).
3.11 Representation of MPP-2g by fixing one of the grain
component at (0,1).
3.12 Flow chart of the novel scheme of classification.
3.13 Sample facial images of children with different poses
of FGnet aging database.
3.14 Sample facial images of adults with different poses of
FGnet aging database.
3.15 Bar graph -- Comparison of other methods with the
Proposed MPP-g on LDP method
3.16 Rotational invariant texture classification based on
T&TO-CM.
5.2 a) Texton matrix
 (b) Texture orientation matrix
 (c) Fig.5.2:(c), (d), (e)and (f) represents the number of occurrences on T&TO of 0°, 45°, 90° and 135°.

5.3 a) Co-occurrence matrix
 b) Reduction of sparse matrix.

5.4 Classification accuracy comparison of KNN classifier obtained in Brodatz dataset using (S = 2) scale with (K = 4, 5, 6, 7, 8) orientations for Gabor wavelets, conventional steerable pyramid decomposition and proposed method.

5.5 The comparison chart of the proposed T&TO-CM with the other existing methods of Table (5.4).

5.6 Bar graph--Comparison of proposed T&TO-CM with ILCLBP-T.

6.1 Proposed significant global local LBP (SGLLBP) representation.

6.2 (a)&(b) are two subimages (c) Similar LBP for two different regions of Fig.(6.1(a)& (b)).

6.3 Illustration of SLLBP transform. (a)Fig.6.2(a)subimage (b) SS-LBP (c) SM-LBP (d) Binary LBP of SM-LBP (e) disjunction operation on SS-LBP and BLBP results SLLBP.

6.4 Illustration of SLLBP transform. (a) Fig.6.2(b) subimage (b) SS-LBP (c) SM-LBP (d) Binary LBP of SM-LBP (e) disjunction operation on SS-LBP and BLBP results SLLBP.

6.5 (a,b) the LBP codes of two texture images, each of which is composed of two LBP micro patterns. By using LBP rotation invariant LBP micro pattern in (c), the two different images will be misclassified as the same class.
6.6 Dataset-1: 45 texture classes (one image for each class) from OuTex. Canvas{005, 021}; Carpet{005}; Granite{001, 003, 004, 005, 006, 007, 008, 009, 010}; Paper{006}; Plastic{001, 002, 003, 004, 005, 009, 016, 017, 018, 019, 020, 021, 022, 023, 024, 025, 026, 027, 028, 029, 030, 031, 032, 033, 034, 035, 036, 038, 040, 041}; Wood{006, 008}.

6.7 Dataset-2: The dataset of granite textures used in the experiments (unrotated images). From the top: Acquamarina, Azul Capixaba, Bianco Cristal, Bianco Sardo, Rosa Beta, Azul Platino, Giallo Ornamentale, Giallo Napoletano, Giallo Santa Cecilia, Giallo Veneziano, Rosa Porri`no A, Rosa Porri`no B.

6.8 An example of the effect of 5° rotations through bilinear interpolation on the texture structure. Even a small rotation angle may induce changes in the LBP code of a grayscale pattern.