CHAPTER IX

S. N. SUMMABILITY OF

FOURIER SERIES

(84 - 91)
In 1949 Meyer-König introduced the so-called S_α-method of summability which is one of a family of transformations including the Euler, Borel and Taylor (Circle methods) methods. Later in 1959 Jamimovski introduced the $\left[F, \alpha_n \right]$ transformation which includes the Euler method (E, q), Karamata method (K) and Lototsky method as particular cases.

For the first time Meir and Sharma introduced generalization of the S_α-method and called it $\left[S, \alpha_n \right]$ method. They obtained sufficient conditions for the regularity of this method. They have also critically examined the behaviour of its Lebesgue constant.

Let $\{s_j\}_0^\infty$ be a given sequence of real or complex numbers we shall say that $\{s_j\}$ is the $\left[S, \alpha_n \right]$ transform of $\{s_j\}$, i.e. the sequence of partial sums of the series $\sum a_n$ if

$$\sigma_n = \sum_{k=0}^{\infty} c_{n,k} S_k \quad (n = 0, 1, 2, \ldots)$$

converges, where $(c_{n,k})$ is given by the identity

$$\sum_{j=0}^{n} \frac{1 - \alpha_j}{1 - \alpha_j \theta} = \sum_{k=0}^{n} c_{n,k} \theta^k$$

The sequence $\{s_j\}$ is said to be $\left[S, \alpha_n \right]$ summable to σ if

$$\lim_{n \to \infty} \sigma_n = \sigma$$

1. Meyer König (M)
2. Jakimovski, A. (J)
3. Meir, A and Sharma, A (M.S.)
4. Ibid
Let \(f(x) \in L_2(0,2\pi) \) and be periodic with period \(2\pi \)
outside this range. Let the Fourier series associated with this function be

\[
\frac{1}{2} a_0 + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right) = \sum_{n=0}^{\infty} A_n (x)
\]

and as usual let us denote

\[
\phi(t) = \phi_x(t) = \frac{1}{2} \left\{ f(x + t) + f(x-t) - 2s \right\}
\]

\(s \) is a constant.

Also,

\[
V_N = 1 + 2 \sum_{j=0}^{N} \frac{\alpha_j}{1-\alpha_j}
\]

\[
T_N = 2 \sum_{j=0}^{N} \frac{\alpha_j}{(1-\alpha_j)^2}
\]

Meir and Sharma\(^1\) proved following theorem regarding regularity of \([S, \alpha_n]\) method

Theorem A Suppose the sequence \(\{\alpha_j\} \) satisfied

\[
|\alpha_j| < 1 \quad (j = 0, 1, 2 \ldots)
\]

\[
H = \prod_{j=0}^{\infty} \frac{|1 - \alpha_j|}{|1 - |\alpha_j||} < \infty
\]

\[
\sum_{j=0}^{\infty} |\alpha_j| = \infty
\]

Then the \([S, \alpha_n]\) transformation is regular.

Meir and Sharma\(^2\) while studying Lebesque constant established that when \(V_N \) and \(T_N \) are bounded the \([S, \alpha_n]\) method sums only convergent Fourier series and so hereafter we shall assume \(T_N \rightarrow \infty \) and \(V_N \rightarrow \infty \) with \(N \)

1. Meir, A and Sharma, A. (M.S.)
2. Ibid.
Lebesque gave the convergence criteria for the Fourier series. He proved following theorem

Theorem Fourier series (9.2.1) converges to the value \(f(x) \) at every point \(x \) at which

(9.2.8) \[\Phi(t) = o(t) \quad \text{as} \quad t \to +0 \]

and

(9.2.9) \[\int_{\eta}^{\infty} \frac{\Phi(t) - \Phi(t+\eta)}{t} \, dt \to 0 \quad \text{as} \quad \eta \to 0 \]

Voluminous work, on this convergence criteria relating to different summability methods namely (C,1), (H,1), (N,pn), (E), (E,1), \([F,q_n]\), ...

... Taylor (circle method) etc. had been done during the last fifty years. In this chapter we have studied \([s, \alpha_n]\) method of summability for Fourier series. In fact we shall prove the following theorem

Theorem If

(9.2.10) \[\int_{a}^{t} \Phi(t) \, dt = o(t) \quad \text{as} \quad t \to +0 \]

and

(9.2.11) \[\lim_{n \to \infty} \int \Phi(t) - \Phi(t + 2\pi/\sqrt{n}) \, \exp \left(-\frac{t^2}{n^2} \right) \, dt \to 0 \]

where \(\xi \) is positive constant then the Fourier series of \(f \) is \([s, \alpha_n]\) summable to \(s \) at the point \(x \).

9.3 For the proof of our theorem we shall need following estimates

Let

\[k_n(t) = e^{i \theta} \prod_{j=0}^{n} \frac{1 - \alpha_j}{1 - \alpha_j e^{2it}} \]

1 - Lebesque, H (L)
See also Zygmund (2), p.29.
Then for \(0 < t < \infty \)

\[
(9,3.1) \quad I_m \left| K_n(t) \right| = 0 \left(\frac{1}{t} \sqrt{T_n} \right)
\]

(See Meir and Sharma \(^1\))

Now by the regularity condition of \(\left[S_n, \alpha_n \right] \)

method, we have \(\sum \alpha_j = \infty \) which implies that \(V_n \) and \(T_n \) tend to

infinity as \(n \to \infty \). Now choose \(\xi_n = \xi_n(n) \) such that \(T_n \xi_n^3 = o(1) \)

and \(\frac{T_n \xi_n^2}{S_{n+1}} = o(1) \) as \(n \to \infty \) and it is obvious that

\(V_n^2 / T_n \to \gamma \) as \(n \to \infty \)

So, for \(t \) sufficiently small

\[
\frac{1 - \alpha_j}{1 - \alpha_j e^{xt}} = \left[\frac{1 - \alpha_j (e^{xt} - 1)}{1 - \alpha_j} \right]^{-1}
\]

\[
= 1 + \alpha_j \left(\frac{2it - 2t^2 + o(t^3)}{1 - \alpha_j} \right) + \left(\frac{\alpha_j}{1 - \alpha_j} \right)^2 \left(-4t^2 + o(t^3) \right)
\]

\[
= 1 + \frac{2\alpha_j it}{1 - \alpha_j} - \frac{2\alpha_j (1+\alpha_j)}{(1-\alpha_j)^2} t^2 + O(\alpha_j^3 t^3)
\]

\[
= e^{\exp \left[\frac{2\alpha_j it}{1 - \alpha_j} - \frac{2\alpha_j}{(1-\alpha_j)^2} t^2 + O(\alpha_j t^3) \right]}
\]

Therefore for \(t \) to be very small

\[
\prod_{j=0}^{n} \frac{1 - \alpha_j}{1 - \alpha_j e^{xt}} = e^{\exp \left\{ (it \sum_{j=0}^{n} \frac{2\alpha_j}{1 - \alpha_j}) - t^2 \left(\sum_{j=0}^{n} \frac{2\alpha_j}{(1 - \alpha_j)^2} \right) + t^3 \sum_{j=0}^{n} \alpha_j \right\}}
\]

\(1 = \text{Meir, A and Sharma, A (MS)} \)
\[= \exp \left[V_n t - T_n t^2 + o(1) \right] \]

Therefore for \(t \) to be very small \(o(t) \approx 0 \)

\[|K_n(t)| = e^{-T_n t^2} \exp \left\{ (\nu_n + 1) i t \right\} \]

(9.3.2) \(I_m |K_n(t)| = 0 \left(e^{-T_n t^2} \sin (\nu_n t) \right) \)

9.4 **Proof of the Theorem**

It is well known that

\[\delta_k - s = \frac{2}{\lambda} \int_0^\lambda \frac{\phi(t) \sin \left(\nu + 1/2 \right) t dt}{t} + o(1) \]

Then

\[e^{-\delta_k} o(1) = \frac{2}{\lambda} \int_0^\lambda \frac{\phi(t)}{t} t \left\{ \sum_{k=0}^{\nu_n} c_{n,k} \sin(k+1/2) t dt \right\} + o(1) \]

(9.4.1)...

\[= I_1 + I_2 + I_3, \text{ say} \]

where \(1/3 \ll \ll 1/2 \)

Now first of all consider \(I_3 \)

\[|I_3| = o(1) \int_{T_n^{-x}}^\lambda \frac{\phi(t)}{t} t \sqrt{T_n} \ dt \text{ by (9.3.1)} \]

\[= o \left(\frac{1}{\sqrt{T_n}} \right) \left[o(T_n^{-x}) \right], \text{ On integration by parts} \]

(9.4.2)...

\[= o(1) \text{ as } n \rightarrow \infty \because \alpha \ll 1/2 \]

Next

\[|I_1| = o(1) \int_0^\lambda \frac{\phi(t)}{t} e^{-T_n t^2/4} \sin (\nu_n + 1) t/2 dt \text{ by (9.3.2)} \]

\[= o \left(\frac{1}{\nu_n} \right) o \left(\frac{1}{\sqrt{T_n}} \right) \]

(9.4.3)...

\[= o(1) \text{ by hypothesis (9.2.10)} \]

Lastly

\[I_2 = o(1) \int_{S_{\nu_n}}^\lambda \frac{\phi(t)}{t} e^{-T_n t^2/4} \sin \frac{\nu_n t}{2} dt \]

\[\text{by hypothesis (9.2.10)} \]
\[
= \int_{\frac{2\pi}{V_n}}^{\frac{2\pi}{V_n}} \frac{\phi(t) - \phi(t+\frac{2\pi}{V_n})}{t} \exp\left(-\frac{T_n}{4} t^2\right) \sin \frac{V_n t}{n^2} \, dt \\
+ \int_{\frac{2\pi}{V_n}}^{\frac{2\pi}{V_n}} \phi(t+\frac{2\pi}{V_n}) \left\{ \exp\left(-\frac{T_n}{4} t^2\right) - \exp\left(-\frac{T_n}{4} \left(t+\frac{2\pi}{V_n}\right)^2\right) \right\} \sin \frac{V_n t}{n^2} \, dt \\
= \int_{0}^{\frac{2\pi}{V_n}} \frac{\phi(t+\frac{2\pi}{V_n})}{t+\frac{2\pi}{V_n}} \exp\left(-\frac{T_n}{4} \left(t+\frac{2\pi}{V_n}\right)^2\right) \left\{ \frac{1}{t+\frac{2\pi}{V_n}} - \frac{1}{t+\frac{2\pi}{V_n}} \right\} \sin \frac{V_n t}{n^2} \, dt \\
+ \int_{\frac{2\pi}{V_n}}^{\frac{2\pi}{V_n}} \frac{\phi(t+\frac{2\pi}{V_n})}{t+\frac{2\pi}{V_n}} \exp\left(-\frac{T_n}{4} \left(t+\frac{2\pi}{V_n}\right)^2\right) \sin \frac{V_n t}{n^2} \, dt \\
\text{(9.4.4)} \Rightarrow \sum_{\tau=1}^{N} I_2 (\tau). \\
\text{Take} \\
I_2 (1) = o(1) \text{ by hypothesis (9.2.11) of our theorem} \\
\text{Consider,} \\
I_2 (2) = \int_{\frac{2\pi}{V_n}}^{\frac{2\pi}{V_n}} \frac{\phi(t+\frac{2\pi}{V_n})}{t} \exp\left(-\frac{T_n}{4} t^2\right) \sin \frac{V_n t}{n^2} \, dt \\
\text{Now by the application of mean value theorem of differential calculus to expression under \[\] sign, we have}
\[|I_2(2)| \leq O(1) \int \frac{T_n^{-\alpha}}{t} \left| \phi(t + 2\pi/V_n) \right| \exp\left(-\frac{T_n \delta^2}{4} \right) (T_n^2) V_n(t) \, dt. \]

(for \(t < \delta < t + 2\pi/V_n < 2t \))

\[= O\left(\frac{T_n \delta}{V_n} \right) \int \frac{T_n^{-\alpha}}{t} \left| \phi(t + 2\pi/V_n) \right| \exp\left(-\frac{T_n}{4} \right) \frac{1}{t(t + 2\pi/V_n)} \, dt. \]

\[I_2(3) = O\left(\frac{1}{V_n^{\alpha}} \right) \int \frac{T_n^{-\alpha}}{t} \left| \phi(t + 2\pi/V_n) \right| \exp\left(-\frac{T_n}{4} \right) \frac{1}{t(t + 2\pi/V_n)} \, dt. \]

\[= O\left(\frac{1}{V_n^{\alpha}} \right) \int \frac{T_n^{-\alpha}}{t} \left| \phi(t + 2\pi/V_n) \right| \exp\left(-\frac{T_n}{4} \right) \frac{1}{t(t + 2\pi/V_n)} \, dt. \]

Now integrate by parts and use the fact that

\[\frac{T_n}{V_n \sqrt{2}} \longrightarrow 0 \text{ as } n \longrightarrow \infty \text{ with hypothesis of our theorem.} \]

\[I_2(4) = o(1) \int \frac{T_n^{-\alpha}}{t} \left| \phi(t) \right| V_n t \, dt. \]

\[I_2(5) = o(1) \int \frac{T_n^{-\alpha}}{t} \left| \phi(t) \right| \, dt. \]

\[= o(T_n^\alpha) \int \frac{T_n^{-\alpha}}{t} \left| \phi(t) \right| \, dt. \]

\[I_2(6) = o(1) \]

Collection of (9.4.4) (9.4.5) ... (9.4.8) gives

\[I_2 = o(1). \]

Collection of (9.4.1) (9.4.2) (9.4.3) & (9.4.9)

completes the proof of the theorem.
9.5 REMARKS

It is interesting to note that if $\alpha_j = r < 1$ for all j then $\sum_{n} s_n \alpha_n \sum_{n} \alpha_n$ method reduces to the well known Taylor method (or circle method of summability), so if we put $\alpha_j = r < 1$ for all j our theorem takes the following form

If

$$
(9.5.1) \quad \int_{0}^{t} \phi(t) \ dt = o(t) \ as \ t \to +c, \ and
$$

$$
(9.5.2) \quad \lim_{n \to \infty} \left(\int_{0}^{t} \phi(t) - \hat{\phi}(t+1/n) \right) \ exp \left(\frac{-nrt^2}{t} \right) \ exp \left(\frac{-nrt^2}{2(1-r)^2} \right) \ dt \to 0
$$

Where ξ is +ve constant, then the Fourier series is $\sum_{n} s_n \alpha_n$ summable to S at $t = x$.

This indicates that the result of Holland Sahney and Tzimbalario\(^1\) on Taylor summability of Fourier series is the particular case of our theorem.

It is also desirable to note that $r = 0$ leads to the ordinary convergence therefore this value is excluded as far the summability $s_n \alpha_n$ method is concerned but in that case our theorem coincides with well known Lebesgue convergence criteria for the Fourier series.

\(0 = 0 = 0 = 0\)

\(^1\) Holland A.S.D., Sahney, B.N. Tzimbalario, J (HST)