CHAPTER IV

SOME RESULTS ON FIXED POINTS IN

PSEUDOCOMPACT TICHONOV SPACES
CHAPTER IV

SOME RESULTS ON FIXED POINTS IN PSEUDOCOMPACT TICHONOV SPACES

4.1. Recently Harinath [1] obtained some results on fixed points in Pseudocompact Tichonov space which generalize some results of Fisher [3] over compact metric space. The main result of Harinath ([1], Theorems 5) is as follows:

Theorem A. Let P be a Pseudocompact Tichonov space and μ be a non-negative real valued continuous function over $P \times P$ ($P \times P$ is Tichonov but need not be Pseudocompact) satisfying:

$$
\mu(x,x) = 0 \text{ for all } x \in P \quad \text{and} \\
\mu(x,y) \leq \mu(x,z) + \mu(y,z) \text{ for all } x,y,z \in P.
$$

If $T : P \rightarrow P$ is a continuous map satisfying:

$$
\mu(Tx,Ty) < \alpha_1 \mu(x,y) + \alpha_2 \mu(Tx,x) + \alpha_3 \mu(Tx,y) + \alpha_4 \mu(x,Ty) + \alpha_5 \mu(Ty,y)
$$

(4.4.2)
for all \(x, y \in P \) with \(x \neq y \) and \(Tx \neq Ty \),

where \(\alpha_3 \geq 0, \alpha_2 + \alpha_3 < 1 \) and \(\alpha_1 + \alpha_2 + 2\alpha_3 + \alpha_5 \leq 1 \), then

\(T \) has a fixed point in \(P \). This is unique, whenever

\(\alpha_1 + \alpha_3 + \alpha_4 \leq 1 \).

This theorem is further extended by Jain and Dixit [1].

The main object of the present section is to obtain

a fixed point theorem in Pseudocompact Tichonov space which

includes all the above results.

Theorem 1. Let \(P \) and \(\mu \) be the same as defined in Theorem A

and \(\mu \) satisfies condition (4.1.1). If \(T : P \to P \) is a

continuous map satisfying:

\[
(4.1.3) \quad \mu(Tx, Ty) < \alpha_1 \mu(x, y) + \alpha_2 \mu(Tx, x) + \alpha_3 \mu(Tx, y) \\
+ \alpha_4 \mu(x, Ty) + \alpha_5 \mu(Ty, y) + \alpha_6 \frac{\mu(Tx, x) \mu(Ty, y)}{\mu(x, y)} + \alpha_7 \frac{\mu(Tx, Ty) \mu(Ty, y)}{\mu(x, y)} + \alpha_8 \frac{\mu(Tx, x) \mu(Ty, y)}{\mu(Tx, Ty)}
\]

for all \(x, y \in P \) with \(x \neq y \) and \(Tx \neq Ty \), where \(\alpha_3 \geq 0 \),
\[a_8 \geq 0, \ a_2 + a_3 + a_6 + a_8 < 1 \quad \text{and} \quad a_1 + a_2 + 2a_3 + a_5 + a_6 + 2a_8 \leq 1, \]
then \(T \) has a fixed point in \(P \). This is unique, whenever \(a_1 + a_3 + a_4 + a_7 \leq 1 \).

Proof: We define \(\phi : P \to \mathbb{R} \) by \(\phi(p) = \mu(Tp, p) \) for all \(p \in P \), where \(\mathbb{R} \) is the set of real numbers. Clearly \(\phi \) is continuous being the composite of two continuous functions \(T \) and \(\mu \). Since \(P \) is pseudocompact Tikhonov space every real valued continuous function over \(P \) is bounded and attains its bounds. Thus there exists a point \(v \in P \) such that
\[\phi(v) = \inf \{ \phi(p) / p \in P \} \], where 'inf' denotes the infimum or the greatest lower bound in \(\mathbb{R} \) (note \(\phi(p) \in \mathbb{R} \)). We now affirm that \(v \) is a fixed point for \(T \). If not, let us suppose that \(Tv \neq v \). Then applying (4.1.3), we have
\[\phi(Tv) = \mu(T^2v, Tv) \]
\[< a_1 \mu(Tv, v) + a_2 \mu(T^2v, Tv) + a_3 \mu(T^2v, v) \]
\[+ a_4 \mu(Tv, Tv) + a_5 \mu(Tv, v) + a_6 \frac{\mu(T^2v, Tv)}{\mu(Tv, v)} \]
\[+ a_7 \frac{\mu(Tv, Iv)}{\mu(Tv, v)} + a_8 \frac{\mu(T^2v, v)}{\mu(T^2v, Tv)} \]
or,
\[(1 - a_2 - a_3 - a_6 - a_8) \phi(Tv) < (a_1 + a_3 + a_5 + a_8) \phi(v) \]
\[(\therefore \ a_3 \geq 0, \ a_8 \geq 0) \]
or, $\phi(Tv) < \phi(v)$ \(\therefore \alpha_2 + \alpha_3 + \alpha_4 + \alpha_8 < 1\),

\[\alpha_1 + \alpha_2 + 2\alpha_3 + \alpha_5 + \alpha_6 + 2\alpha_8 \leq 1\]

leading to a contradiction and hence $v \in P$ is a fixed point for T.

To show the uniqueness of v, if possible, let $w \in P$ be another fixed point for T, i.e. $Tw = w$ and $w \neq v$ in P.

Then the application of (4.1.3) gives

\[\mu(v, w) = \mu(Tv, Tw)\]

\[\leq (\alpha_1 + \alpha_3 + \alpha_4 + \alpha_7) \mu(v, w)\]

\[\leq \mu(v, w) (\therefore \alpha_1 + \alpha_3 + \alpha_4 + \alpha_7 \leq 1)\]

again leading to a contradiction which shows that $v \in P$ is unique. This completes the proof of the theorem.

Every metric space is a Hausdorff space. Hence as a particular case of our theorem, we have the following result on a compact metric space.
COROLLARY. Let \((M,d)\) be a compact metric space and
\(T : M \rightarrow M\) be a continuous map satisfying:
\[
d(Tx,Ty) < a_1 d(x,y) + a_2 d(Tx,x) + a_3 d(Tx,y) \\
+ a_4 d(x,Ty) + a_5 d(Ty,y) + a_6 \frac{d(Tx,x) d(Ty,y)}{d(x,y)} \\
+ a_7 \frac{d(x,Ty) d(Tx,y)}{d(x,y)} + a_3 \frac{d(Tx,x) d(Tx,y)}{d(Tx,Ty)}
\]
for all \(x,y \in M\) with \(x \neq y\) and \(Tx \neq Ty\), where \(a_3 \geq 0\),
\(a_8 \geq 0\), \(a_2+a_3+a_6+a_8 < 1\) and \(a_1 + a_2 + 2a_3 + a_5 + a_6 + 2a_8 \leq 1\),
then \(T\) has a fixed point in \(M\). This is unique, when ever
\(a_1 + a_3 + a_4 + a_7 \leq 1\).

REMARKS:

(1) If \(a_6 = a_7 = a_8 = 0\), Theorem 1 reduces to
Theorem A.

(2) If \(a_8 = 0\), Theorem 1 reduces to a result of Jain
and Dixit ([1], Theorem 1).

(3) In the corollary, if we take
(1) \(a_1 = 1\) and \(a_2 = a_3 = a_4 = a_5 = a_6 = a_7 = a_8 = 0\),
we get Fisher's Theorem 1 [3].
(ii) \(a_1 = a_3 = a_4 = a_6 = a_7 = a_8 = 0 \) and \(a_2 = a_5 = \frac{1}{2} \), we get Fisher's Theorem 2 [3].

(iii) \(a_1 = a_2 = a_5 = a_6 = a_7 = a_8 = 0 \) and \(a_3 = a_4 = \frac{1}{2} \), we get Fisher's Theorem 3 [3].

(iv) \(a_2 = a_5 \), \(a_3 = a_4 \) and \(a_6 = a_7 = a_8 = 0 \), we obtain Fisher's Theorem 4 [3].

4.2. In 1981, Ćirić [8] established some interesting fixed point theorems in compact metric space. We now extend some of his results by proving:

THEOREM 2. Let \(P \) and \(\mu \) be the same as defined in Theorem A and \(\mu \) satisfies condition (4.1.1). If \(T: P \rightarrow P \) is a continuous map satisfying:

\[
(4.2.1) \quad \mu(T^n x, T^n y) < \max \left\{ \mu(x, y), \mu(x, Tx), \mu(y, Ty), \frac{1}{2}[\mu(x, Ty) + \mu(y, Tx)] \right\}
\]

for all distinct \(x, y \in P \), where \(n = n(x, y) \) is a positive integer, then \(T \) has a unique fixed point in \(P \).
Proof: Let the mapping ϕ and the point v be defined as in the proof of Theorem 1. We now affirm that v is a fixed point of T. If not, let us suppose that $\phi(v) = (Tv, v) > 0$. Then by (4.2.1) for $n = n(Tv, v)$ we have

$$\phi(T^n v) = \mu(T^nTv, T^n v) = \mu(T^nTv, T^n v)$$

$$< \max \{ \mu(Tv, v)\mu(Tv, T^2v), \mu(v, Tv) \}$$

$$= \frac{1}{2}\left[\mu(Tv, Tv) + \mu(v, T^2v) \right] \}$$

$$\leq \max \{ \phi(v), \phi(Tv), \frac{1}{2} \left[\phi(v) + \phi(Tv) \right] \}$$

Since $\max \{ \phi(v), \phi(Tv), \frac{1}{2} \left[\phi(v) + \phi(Tv) \right] \} = \phi(v)$, we have $\phi(T^n v) < \phi(v)$, which is a contradiction.

Therefore v is a fixed point of T.

The uniqueness of the fixed point follows in the following way:

Let w be a fixed point of T different from v.

Then

$$d(T^n v, T^n w) < \max \{ d(v, w), d(v, Tv), d(w, Tw)$$

$$= \frac{1}{2} \left[d(v, Tw) + d(w, Tv) \right] \}$$

for some $n = n(v, w)$.
But this is impossible since $Tv = v = T^n v$ and $Tw = w = T^n w$. This completes the proof.

Theorem 3. Let P and μ be the same as defined in Theorem A and μ satisfies condition (4.1.1). If $T : P \to P$ is a continuous map satisfying:

$$
(4.2.2) \quad \mu(T^n x, T^n y) < \max_{0 \leq i,j,k,l,m \leq n} \left\{ \mu(T^i x, T^j y), \mu(T^j x, T^{j+1} x), \mu(T^k y, T^{k+1} y), \frac{1}{2}[\mu(T^0 x, T^l + 1 y) + \mu(T^m y, T^{m+1} y)] \right\}
$$

for some positive integer $n = n(x, y)$ and $x, y \in P$ for which the right hand side of the inequality is positive, then T has a unique fixed point in P.

Proof: Let the mapping ϕ and the point v be defined as in the proof of Theorem 1 and let $n = n(Tv, v)$. Then by (4.2.2) we have

$$
\phi(T^n v) = \mu(T^n Tv, T^n v) < \max_{0 \leq i,j,k,l,m \leq n} \left\{ \mu(T^i v, T^j v), \mu(T^{j+1} v, T^{j+1} v), \mu(T^k v, T^k v), \frac{1}{2}[\mu(T^m v, T^{m+1} v) + 0] \right\}.
$$
Using the triangle inequality and (4.2.2) we obtain
\[\phi(T^n v) < \phi(v), \] which is a contradiction. Therefore right hand side is zero for \(x = T v \) and \(y = v \).

The uniqueness of the fixed point follows easily.
This completes the proof.

Remark: We may assume that the righthand side of
inequality (4.2.2) is positive for each \(x, y \in P \). For
if it is not positive, then \(x = y = Tx \), which means that \(T \)
has a fixed point.

As particular cases of our theorems, we have the
following results of Ćirić [8] on compact metric space.

Corollary 2. Let \(T \) be a continuous mapping on the compact
metric space \(M \) into itself satisfying
\[
d(T^n x, T^n y) < \max \left\{ d(x, y), d(x, Tx), d(y, Ty), \right. \\
\left. \frac{1}{2} \left[d(x, Ty) + d(y, Tx) \right] \right\}
\]
for all distinct \(x, y \in M \), where \(n = n(x, y) \) is a positive
integer. Then \(T \) has a unique fixed point in \(M \).
COROLLARY 3. Let T be a continuous mapping on the compact metric space M into itself satisfying

$$d(T^nx, T^ny) < \max_{0 \leq i, j, k, l, m \leq n} \{d(T^ix, T^jy), d(T^ix, T^{i+1}x),$$

$$d(T^ky, T^{k+1}y), \frac{1}{2}[d(T^lx, T^{l+1}y) + d(T^my, T^{m+1}x)]\}$$

for some positive integer $n = n(x, y)$ and x, y in M for which the right hand side of inequality is positive. Then T has a unique fixed point in M.

4.3. Finally in this section we present some more results on fixed points in Pseudocompact Tichonov space which include some results of Fisher [1] established in compact space.

THEOREM 4. Let P and μ be the same as defined in Theorem A and μ satisfies condition (4.1.1). If $T: P \rightarrow P$ is a continuous map satisfying:

$$(4.3.1) \quad \{\mu(Tx, Ty)\}^2 < \max \{\mu(x, Tx)\mu(y, Ty), c\mu(x, Ty)\mu(y, Tx)\}$$

for all distinct $x, y \in P$, where $c > 0$. Then T has a fixed point in P which is unique whenever $c \leq 1$.

Proof: Let the mapping ϕ and the point v be defined as in the proof of Theorem 1 and let us suppose that $Tv \neq v$. Then by (4.3.1), we have

$$\left\{ \phi(Tv) \right\}^2 = \left\{ \mu(T^2v, Tv) \right\}^2$$

$$= \max \{ \mu(Tv, T^2v) \mu(v, Tv), c_\rho(Tv, Tv) \mu(v, T^2v) \}$$

$$= \mu(Tv, T^2v) \mu(v, Tv)$$

which, since $\mu(T^2v, Tv) \geq 0$, implies

$$\phi(Tv) < \phi(v)$$

leading to a contradiction and therefore $Tv = v$, i.e. $v \in P$ is a fixed point for T.

To prove the uniqueness of v, if possible, let $w \in P$ be another fixed point for T, i.e. $Tw = w$ and $w \neq v$. Then using (4.3.1) we have

$$\left\{ \mu(v, w) \right\}^2 = \left\{ \mu(Tv, Tw) \right\}^2$$

$$< \max \{ \mu(v, T_tv) \mu(w, Tw), c_\rho(v, Tw) \mu(w, T^2v) \}$$

$$= c\left\{ \mu(v, w) \right\}^2 \leq \left\{ \mu(v, w) \right\}^2 (\therefore c \leq 1)$$
again leading to a contradiction which prove that \(v \in P \) is unique. This completes the proof of the theorem. An easy consequence of this theorem yields the following result.

Corollary 4. (Fisher [4], Theorem 6). Let \(T \) be a continuous self-map of a compact metric space \((M, d)\) satisfying

\[
\left\{ d(Tx, Ty) \right\}^2 < \max \left\{ d(x, Tx) d(y, Ty), c d(x, Ty) d(y, Tx) \right\}
\]

for all distinct \(x, y \in M \), where \(c \geq 0 \). Then \(T \) has a fixed point in \(M \). If \(c \leq 1 \), then the fixed point is unique.

Theorem 5. Let \(P \) and \(\mu \) be the same as defined in Theorem A. Let \(T : P \to P \) be a continuous map satisfying

\[
(4.3.2) \quad \left\{ \mu(Tx, Ty) \right\}^2 < \frac{1}{2} \left\{ \mu(x, Tx) \mu(x, Ty) + \mu(y, Ty) \mu(y, Tx) \right\}
\]

for all distinct \(x, y \in P \). Then \(T \) has a unique fixed point in \(P \).

Proof: Let \(\phi \) and \(v \) be as in the proof of Theorem 1. If \(v \in P \) is not a fixed point of \(T \), then applying (4.3.2) we have

\[
\left\{ \phi(Tv) \right\}^2 = \left\{ \mu \left(TV, TV \right) \right\}^2 < \frac{1}{2} \left\{ \mu(TV, TV) \mu(TV, TV) \right\}
\]
\[+ \mu(v, Tv) \mu(v, T^2v) \]
\[= \frac{1}{2} \mu(v, T^2v) \mu(v, Tv) \]
\[\leq \frac{1}{2} \mu(v, Tv) \left[\mu(v, Tv) + \mu(Tv, T^2v) \right] \]

which, since \(\mu(v, Tv) > 0 \), implies

\[\phi(Tv) < \phi(v) \]

leading to a contradiction and hence \(Tv = v \), i.e. \(v \in P \)
is a fixed point for \(T \).

Uniqueness of \(v \) follows easily as in Theorem 4.

Corollary 2. (Fisher [6], Theorem 4). Let \(T \) be a
continuous self-map of a compact metric space \((M, d)\)
satisfying
\[\left\{ d(Tx, Ty) \right\}^2 < \frac{1}{2} \left\{ d(x, Tx) d(x, Ty) + d(y, Ty) d(y, Tx) \right\} \]

for all distinct \(x, y \in M \). Then \(T \) has a unique fixed point
in \(M \).

Theorem 6. Let \(P \) and \(\mu \) be the same as defined in Theorem A
Let \(T : P \rightarrow P \) be a continuous map satisfying
\[(4.3.3) \ \mu(Tx, Ty) < \left[\left\{ \mu(x, Tx) \right\}^2 + \left\{ \mu(y, Ty) \right\}^2 \right]/\left[\mu(x, Tx) + \mu(y, Ty) \right] \]
for all \(x, y \in P \) for which \(\mu(x, Tx) + \mu(y, Ty) = 0 \). Then

\(T \) has a fixed point in \(P \). Further, if

\[
\mu(x, Tx) + \mu(y, Ty) = 0 \quad \text{implies} \quad \mu(Tx, Ty) = 0,
\]

then the fixed point is unique.

Proof: Let \(\phi \) and \(v \) be as in the proof of Theorem 1. If \(v \in P \) is not a fixed point of \(T \), then applying (4.3.3) we have

\[
\phi(Tv) = \mu(T^2v, Tv)
\]

\[
< \frac{\left(\mu(Tv, T^2v) \right)^2 + \left(\mu(v, Tv) \right)^2}{\mu(Tv, T^2v) + \mu(v, Tv)}
\]

\[
= \frac{\left(\phi(Tv) \right)^2 + \left(\phi(v) \right)^2}{\phi(Tv) + \phi(v)}
\]

i.e.

\[
\left(\phi(Tv) \right)^2 + \phi(Tv) \phi(v) < \left(\phi(Tv) \right)^2 + \left(\phi(v) \right)^2
\]

which, since \(\phi(v) > 0 \), implies

\[
\phi(Tv) < \phi(v)
\]

leading to a contradiction and hence \(Tv = v \).

Uniqueness of \(v \) follows from the stated condition.
COROLLARY 6. (Fisher [6], corollary, p. 34) Let \(T \) be a continuous self-map of a compact metric space \((M, d)\) satisfying:

\[
d(Tx, Ty) < \frac{\left\{d(x, Tx)\right\}^2 + \left\{d(y, Ty)\right\}^2}{d(x, Tx) + d(y, Ty)}
\]

for all \(x, y \in M \) for which \(d(x, Tx) + d(y, Ty) \neq 0 \). Then \(T \) has a fixed point in \(M \). Further, if

\[
d(x, Tx) + d(y, Ty) = 0 \quad \text{implies} \quad d(Tx, Ty) = 0,
\]

then the fixed point is unique.