CHAPTER III

COMMON FIXED POINT THEOREMS FOR
NEARLY DENSIFYING MAPPINGS

(53 - 70)
CHAPTER III

COMMON FIXED POINT THEOREMS FOR NEARLY DENSIFYING MAPPINGS

3.1. C. Kuratowski [1] in 1966 has introduced and studied the important concept of "Measure of non-compactness of bounded set!"

Measure of non-compactness of bounded set A of a metric space X, denoted by $\alpha(A)$, is the infimum of all $\varepsilon > 0$ such that A admits a finite covering by sets with diameter less than ε.

Nussbaum [1] and Iseki [1] have studied and obtained many useful properties of the measure of non-compactness of bounded set A. Some of its important properties are:

(i) $0 \leq \alpha(A) \leq \delta(A)$ where $\delta(A)$ is the diameter of A.
(ii) If X is complete and $\alpha(A) = 0$, then A is compact.
(iii) $\alpha(\overline{A}) = 0$ iff $\alpha(A) = 0$, where \overline{A} is the closure of A.
(iv) $\alpha(A \cup B) = \max \{\alpha(A), \alpha(B)\}$ for any two bounded subsets A, B of X.

The concept of densifying mapping was introduced and studied by Furi and Vignoli [1].
DEFINITION 1: A mapping T defined on a metric space X to itself is called densifying if for every bounded subset A of X with $\alpha(A) > 0$, we have $\alpha(T(A)) < \alpha(A)$.

Sastry and Naidu [1] in 1982, have extended the idea of densifying mapping and introduced the concept of nearly densifying mapping.

DEFINITION 2: A self mapping T on a metric space X is said to be nearly densifying if $\alpha(T(A)) < \alpha(A)$, whenever $\alpha(A) > 0$, A is bounded and T-invariant.

It follows that every densifying mapping is nearly densifying.

3.2. In this section, we obtain some common fixed point theorems of Jungck type [1] for nearly densifying mappings on complete metric space.

THEOREM 1: Let S and T be commuting, continuous and nearly densifying self mappings of a complete metric space (X,d). Let F be a lower-semi-continuous mapping of $X \times X$ into \mathbb{R}^+ satisfying the following conditions:
(3.2.1) \(F(x, x) = 0 \quad \forall x \in X \)

(3.2.2) \(F(x, y) \leq F(x, z) + F(z, y) \quad \forall x, y, z \in X \)

(3.2.3) \(F(Tx, Ty) \leq c_1 \frac{F(Sx, Tx) F(Sy, Ty)}{F(Sx, Sy)} + c_2 \left(F(Sx, Tx) + F(Sy, Ty) \right) + c_3 \left(F(Sx, Ty) + F(Tx, Sy) \right) \)

for \(Sx \neq Sy, Tx \neq Ty \). Constants \(c_1, c_2, c_3 \in \mathbb{R}^+ \) such that \(c_1 + 2c_2 + 2c_3 < 1 \) and for some \(x_0 \) in \(X \), the set \(A = \{ T^i J^j x_0 : i, j \geq 0 \} \) is bounded. Then \(S \) and \(T \) have a unique common fixed point.

\[T - 1A379 \]

Proof: Clearly, \(A = \{ x_0 \} \cup S \mathring{A} \cup T \mathring{A} \). Since \(S \) and \(T \) are commuting and continuous, therefore \(S \mathring{A} \subseteq \mathring{A} \), \(T \mathring{A} \subseteq \mathring{A} \). Since \(S \) and \(T \) are nearly densifying and \((X, d)\) is complete, therefore \(\mathring{A} \) is compact.

Let \(H = \bigcap_{n=1}^{\infty} (ST)^n \mathring{A} \). Clearly, \(\{(ST)^n \mathring{A}\} \) is a decreasing sequence of non-empty compact subset of \(\mathring{A} \), therefore it follows that \(H \) is a non-empty compact set. Clearly \(SH \subseteq H \), \(TH \subseteq H \).

Let \(x \) be any element of \(H \), then \(x \in (ST)^{n+1} \mathring{A} \) for all \(n \). Therefore there exists \(\{x_n\} \subseteq (ST)^n \mathring{A} \) such
that $ST^n x = x$ for all n. Since S, T are continuous and
$(ST)^n \bar{A}$ is compact and closed for all n, therefore
there exists a point $p \in (ST)^n \bar{A}$ for each n and hence
$ST^n p = x$. Therefore $x \in SH$ and $x \in TH$. Thus $SH = H = TH$.

Since F is lower semi-continuous, the real valued
mapping \emptyset defined on H given by $\emptyset(x) = F(Sx, Tx)$ is
lower semi-continuous and hence attains its infimum in H.
Let $\emptyset(u) = \inf \{ F(Sx, Tx) : x \in H \}$. Since $SH = H$ there
exists $v \in H$ such that $u = S v$. Suppose there is no
point x in X such that $Sx = Tx$. Now, by applying
(3.2.3), we get

$$F(STv, T^2v) = F(TSv, TTv)$$

$$\leq c_1 \frac{F(S^2v, TSv) F(STv, T^2v)}{F(S^2v, STv)} + c_2 \left\{ F(S^2v, TSv) + F(STv, T^2v) \right\}$$

$$+ c_3 \left\{ F(S^2v, T^2v) + F(STv, STv) \right\}$$

By using (3.2.1) and (3.2.2) it follows that

$$\leq c_1 F(STv, T^2v) + c_2 \left\{ F(S^2v, TSv) + F(STv, T^2v) \right\}$$

$$+ c_3 \left\{ F(S^2v, STv) + F(STv, T^2v) \right\}$$
or

$$F(STv, T^2v) \leq h F(S^2v, TSv), \text{ where } h = \frac{c_2 + c_3}{1 - c_1 c_2 - c_3} < 1$$

$$< F(S^2v, TSv)$$
implies $\emptyset(Tv) < \emptyset(Sv) = \emptyset(u)$, a contradiction. Since $\emptyset(u)$ is the infimum. Therefore there exists $z \in H$ such that $Sz = Tz$ and hence $S^2z = STz = TSz$.

Let $S^2z \neq Sz$, then by using (3.2.3) we get

$$F(S^2z, Sz) = F(TSz, Tz) \leq c_1 \frac{F(S^2z, TSz) F(Sz, Tz)}{F(S^2z, Sz)}$$

$$+ c_2 \left\{ F(S^2z, TSz) + F(Sz, Tz) \right\}$$

$$+ c_3 \left\{ F(S^2z, Tz) + F(TSz, Sz) \right\}$$

$$\leq 2c_3 F(S^2z, Sz) < F(S^2z, Sz),$$

a contradiction which shows $Sz = S^2z = TSz$ and this proves that Sz is a common fixed point of mappings S and T.

To prove uniqueness, let w be another common fixed point of S and T, then by (3.2.3), we have

$$F(Sz, w) = F(TSz, Tw) \leq c_1 \frac{F(S^2z, Tw) F(Sw, Tw)}{F(S^2z, Sw)}$$

$$+ c_2 \left\{ F(S^2z, TSz) + F(Sw, Tw) \right\}$$

$$+ c_3 \left\{ F(S^2z, Tw) + F(TSz, Sw) \right\}$$

$$\leq 2c_3 F(Sz, w) < F(Sz, w).$$
This contradiction proves that S and T have a unique common fixed point.

Theorem 2: If in theorem 1, the contractive condition (3.2.3) is replaced by

\[F(Tx, Ty) < \max \left\{ F(Sx, Sy), F(Sx, Tx), F(Sy, Ty), \right. \]
\[
\left. \frac{1}{2} \left[F(Sx, Tx) + F(Sy, Ty) \right], \frac{1}{2} \left[F(Sx, Ty) + F(Tx, Sy) \right] \right\}. \]

Then S and T have a unique common fixed point.

Proof: We shall define the set H, mapping \emptyset on H and prove $SH = H = TH$ as in theorem 1, there exists $v \in H$ such that $u = Sv$ where $\emptyset(u) = \inf \left\{ F(Sx, Tx) : x \in H \right\}$. Suppose there is no point x in X such that $Sx = Tx$. Then by applying (3.2.4), we get

\[
F(STv, T^2v) = F(TSv, TVv)
\]
\[
< \max \left\{ F(S^2v, STv), F(S^2v, TSv), \right. \]
\[
F(STv, T^2v), \frac{1}{2} \left[F(S^2v, TSv) + F(STv, T^2v) \right], \]
\[
\left. \frac{1}{2} \left[F(S^2v, T^2v) + F(TSv, STv) \right] \right\}
\]

By using (3.2.1) and (3.2.2) it follows easily that

\[F(STv, T^2v) < F(S^2v, TSv) \]

i.e.
\[\varnothing(Tv) < \varnothing(Sv) = \varnothing(u), \text{ a contradiction. Since } \varnothing(u) \text{ is the infimum. Therefore there exists } z \in H \text{ such that } Sz = Tz \text{ and hence } S^2z = STz = TSz. \]

Let \(S^2z \neq Sz \), then by applying (3.2.4), we get
\[
F(S^2z, Sz) = F(TSz, Tz) < \max \left\{ F(S^2z, Sz), F(S^2z, TSz), F(Sz, Tz), \frac{1}{2} \left[F(S^2z, TSz) + F(Sz, Tz) \right] \right\} \]
\[
= \max \left\{ F(S^2z, Sz), F(S^2z, S^2z), F(Sz, Sz), \frac{1}{2} \left[F(S^2z, S^2z) + F(Sz, Sz) \right], \frac{1}{2} \left[F(S^2z, Sz) + F(S^2z, Sz) \right] \right\} \]
implies \(F(S^2z, Sz) < F(S^2z, Sz) \), a contradiction. Therefore \(Sz = S^2z = TSz \), showing that Sz is a common fixed point of S and T.

For uniqueness of Sz. Let w is another fixed point, \(F(Sz, w) = F(TSz, Tw) \)
\[
< \max \left\{ F(S^2z, Sw), F(S^2z, TSz), F(Sw, Tw), \frac{1}{2} \left[F(S^2z, TSz) + F(Sw, Tw) \right] \right\}, \]
\[\frac{1}{2} \left[F(S^2 z, Tw) + F(TSz, Sw) \right] \]

\[= \max \left\{ F(Sz, w), F(Sz, Sz), F(w, w), \frac{1}{2} \left[F(Sz, Sz) + F(w, w) \right] \right\} \]

\[\frac{1}{2} \left[F(Sz, w) + F(Sz, w) \right] \]

or

\[F(Sz, w) < F(Sz, w), \] a contradiction implies

\[Sz = w. \] Hence \(S \) and \(T \) have a unique common fixed point.

THEOREM 3: Let \(S \) and \(T \) be a commuting, continuous and nearly densifying selfmappings of a complete metric space \((X,d)\) satisfying

\[F(Tx, Ty) < \frac{F(Sx, Tx) F(Sx, Ty) + F(Sy, Ty) F(Sy, Tx)}{F(Sx, Ty) + F(Sy, Tx)} \ (3.2.5) \]

For \(Sx \neq Sy, Tx \neq Ty \) where \(F \) be lower semi-continuous mapping of \(X \times X \) into \(R^+ \) such that \(F(x, x) = 0 \) for all \(x \) in \(X \) and for some \(x_0 \) in \(X \), the set \(A = \left\{ S^j T^i x_0 : i, j > 0 \right\} \) is bounded. Then \(S \) and \(T \) have a unique common fixed point.

PROOF: The set \(H \) is defined in the same manner and we can prove \(SH = H = TH \) as in the proof of theorem 1.

The real valued mapping \(\emptyset \) on \(H \) given by \(\emptyset(x) = F(Sx, Tx) \) is lower semi-continuous and hence attains its infimum at
u of H. There exists v ∈ H such that u = Sv. Suppose there is no point x in X such that Sx = Tx. Then by applying (3.2.5), we have

\[F(STv, TTv) = F(TSv, TTv) < \frac{F(S^2v, TSv) F(S^2v, T^2v) + F(STv, T^2v) F(STv, TSv)}{F(S^2v, T^2v) + F(STv, TSv)} \]

or \[F(STv, T^2v) < F(S^2v, TSv) \]

implies \(\emptyset(Tv) < \emptyset(Sv) = \emptyset(u) \), a contradiction, since \(\emptyset(u) \) is the infimum. Therefore there exists z ∈ H such that \(Sz = Tz \) and hence \(S^2z = STz = TSz \).

Let \(S^2z \neq Sz \) then by using (3.2.5) we have

\[F(S^2z, Sz) = F(TSz, Tz) < \frac{F(S^2z, TSz) F(S^2z, Tz) + F(Sz, Tz) F(Sz, TSz)}{F(S^2z, Tz) + F(Sz, TSz)} \]

\[= \frac{F(S^2z, S^2z) F(S^2z, Sz) + F(Sz, Sz) F(Sz, S^2z)}{F(S^2z, Sz) + F(Sz, S^2z)} \]

implies \(F(S^2z, Sz) < o \), a contradiction therefore \(Sz = S^2z = TSz \) showing that Sz is a common fixed point of S and T. Uniqueness of the common fixed point can be easily seen as in proof of Theorem 1.
3.3. In this section we assume the lower semi-continuous mapping F of $X \times X$ into \mathbb{R}^+ is symmetric too and we have obtained some common fixed point theorems of Jungck [1] type of complete metric spaces.

Theorem 4: Let S and T be commuting, continuous and nearly densifying self mappings of a complete metric space (X,d). Let F be symmetric and lower semi-continuous mapping of $X \times X$ into \mathbb{R}^+ satisfying the following conditions:

\[(3.3.1) \quad F(x,x) = 0 \quad \forall x \in X \]
\[(3.3.2) \quad F(x,y) \leq F(x,z) + F(z,y) \quad \forall x,y,z \in X \]
\[(3.3.3) \quad [F(Tx,Ty)]^2 \leq c_1 \left\{ F(Sx,Tx) F(Sy,Ty) + F(Sx,Ty)F(Sy,Tx) \right\} + c_2 \left\{ F(Sx,Tx) F(Sy,Tx) + F(Sx,Ty)F(Sy,Ty) \right\} + c_3 \quad F(Sx,Sy) F(Tx,Ty) \]

where constants $c_i \in \mathbb{R}^+$, $i = 1,2,3$, such that $c_1 + 2c_2 + c_3 < 1$ and for some x_0 in X, the set

$A = \left\{ s^i T^j x_0 : i,j \geq 0 \right\}$

is bounded.

Then S and T have a unique common fixed point.

Proof: Clearly $A = \left\{ x_0 \right\} \cup SA \cup TA$, since S and T are commuting and continuous therefore $SA \subseteq A$, $TA \subseteq A$.
Since S and T are nearly densifying and (X,d) is complete, therefore \bar{A} is compact.

Let $H = \bigcap_{n=1}^{\infty} (ST)^n \bar{A}$. Clearly, $\{ (ST)^n \bar{A} \}$ is a decreasing sequence of non-empty compact subsets of \bar{A} and hence H is a non-empty compact set. Clearly $SH \subseteq H$, $TH \subseteq H$.

Let x be any element of H then $x \in (ST)^{n+1} \bar{A}$ for all n. Therefore there exists $\{ x_n \} \subseteq (ST)^n \bar{A}$ such that $STx_n = x$ for all n. Since S, T are continuous and $(ST)^n \bar{A}$ is compact and closed for all n and therefore there exists a point $p \in (ST)^n \bar{A}$, for each n and thus $STp = x$. Therefore $x \in SH$, $x \in TH$. Thus $SH = H = TH$.

Since F is lower semi-continuous, the real valued mapping Φ on H given by $\Phi(x) = F(Sx, Tx)$ is lower semi-continuous and hence attains its infimum in H. Let

$\Phi(u) = \inf \{ F(Sx, Tx) : x \in H \}$. Since $SH = H$, there exists $v \in H$ such that $u = Sv$. Suppose there is no point x in X such that $Sx = Tx$. By applying (3.3.3) and using (3.3.1), (3.3.2), we get.

$$[F(STv, TTv)]^2 = [F(TSv, TTv)]^2$$
\[
\leq \left\{ c_1 F(S^2v, TSv) + c_2 F(S^2v, T^2v) + c_3 F(S^2v, STv) \right\} F(STv, T^2v)
\]

implies

\[
F(STv, T^2v) \leq h F(S^2v, TSv) < F(S^2v, TSv),
\]

where \(h = \frac{c_1 + c_2 + c_3}{1 - c_2} < 1 \).

Thus \(\emptyset (Tv) < \emptyset (Sv) = \emptyset (u) \), a contradiction. Since \(\emptyset (u) \)
is the infimum therefore there exists \(z \in H \) such that \(Sz = Tz \) and hence

\[
S^2z = STz = TSz \ldots \ldots \ldots \ldots \ (1)
\]

Let \(S^2z \neq Sz \), then by applying (3.3.3) and using (3.3.1), (1) we get

\[
[F(S^2z, Sz)]^2 = [F(TSz, Tz)]^2
\]

\[
\leq c_1 \left\{ F(S^2z, TSz) F(Sz, Tz) + F(S^2z, Tz) F(Sz, TSz) \right\}
\]

\[
+ c_2 \left\{ F(S^2z, TSz) F(Sz, TSz) + F(S^2z, Tz) F(Sz, Tz) \right\}
\]

\[
+ c_3 F(S^2z, Sz) F(TSz, Tz)
\]

\[
\leq (c_1 + c_3) [F(S^2z, Sz)]^2 < [F(S^2z, Sz)]^2
\]

\[
[\text{since } c_1 + c_3 \leq c_1 + 2c_2 + c_3 < 1]
\]
a contradiction, which proves $S^2z = TSz = STz$
and thus Sz is a common fixed point of S and T.

To prove uniqueness let w be another common fixed
point of S and T, then by applying (3.3.3),

$$[F(Sz,w)]^2 = [F(TSz, Tw)]^2$$

$$\leq c_1 \left\{ F(S^2z, TSz) F(Sw, Tw) + F(S^2z, Tw) F(Sw, TSz) \right\}$$

$$+ c_2 \left\{ F(S^2z, TSz) F(Sw, TSz) + F(S^2z, Tw) F(Sw, Tw) \right\}$$

$$+ c_3 F(S^2z, Sw) F(TSz, Tw)$$

$$\leq (c_1 + c_3) \left[F(Sz,w) \right]^2 < \left[F(Sz, w) \right]^2 .$$

This contradiction proves that S and T have unique common
fixed point.

Theorem 5: Let S and T be commuting, continuous and
nearly densifying self mappings of a complete metric space
(X,d) satisfying

(3.3.4) $F(Tx, Ty) < \max \left\{ \frac{F(Sx, Tx) F(Sy, Ty)}{F(Sx, Sy)}, \frac{F(Sy, Tx) F(Sx, Ty)}{F(Tx, Ty)}, F(Sx, Sy) \right\}$
for \(Sx \neq Sy, Tx \neq Ty \) where \(F \) be symmetric and lower semi-continuous mapping of \(X \times X \) into \(\mathbb{R}^+ \) such that \(F(x,x) = 0 \) \(\forall x \in X \) and for some \(x_0 \) in \(X \), the set \(A = \{ S^i T^j x_0 : i, j \geq 0 \} \) is bounded. Then \(S \) and \(T \) have a unique common fixed point.

PROOF: The set \(H \) is defined in the same manner and we can prove \(SH = H = TH \) as in the proof of theorem 4. The real valued mapping \(\emptyset \) on \(H \) given by \(\emptyset (x) = F(Sx, Tx) \) is lower semi-continuous and hence attains its infimum at \(u \) of \(H \). There exists \(v \in H \) such that \(u = Sv \). Suppose there is no point \(x \) in \(X \) such that \(Sx = Tx \). Then by applying (3.3.4) we have,

\[
F(STv, TTv) = F(TSv, TTv)
\]

\[
< \max \left\{ \frac{F(S^2v, TSv) F(STv, T^2v)}{F(S^2v, STv)}, \frac{F(STv, TSv) F(S^2v, T^2v)}{F(TSv, T^2v)}, \frac{F(S^2v, STv)}{F(S^2v, STv)} \right\}
\]

\[
= \max \left\{ F(STv, T^2v), o, F(S^2v, STv) \right\}
\]

implies \(F(STv, T^2v) < F(S^2v, STv) \),

Thus \(\emptyset (Tv) < \emptyset (Sv) = \emptyset (u) \), a contradiction.
Hence there exists \(z \in H \) such that \(S^2z = Tz \) and therefore \(S^2z = STz = TSz \).

Let \(S^2z \neq Sz \) then by applying (3.3.4) we get,

\[
F(S^2z, Sz) = F(TSz, Tz)
\]

\[
< \max \left\{ \frac{F(S^2z, TSz)}{F(S^2z, Sz)}, F(S^2z, Sz) \right\}
\]

\[
= \max \left\{ \frac{F(S^2z, S^2z)}{F(S^2z, Sz)}, F(S^2z, Sz) \right\}
\]

implies \(F(S^2z, Sz) < F(S^2z, Sz) \). This contradiction proves that \(Sz = S^2z = TSz \).

Thus \(Sz \) is a common fixed point of \(S \) and \(T \).

For uniqueness, let \(w \) is another fixed point of \(S \) and \(T \). By applying (3.3.4)

\[
F(Sz, w) = F(TSz, Tw)
\]

\[
< \max \left\{ \frac{F(S^2z, Tw)}{F(S^2z, Sw)}, F(S^2z, Sw) \right\}
\]
\[F(\text{Sw}, \text{TSz}) \frac{F(S^2z, \text{Tw})}{F(\text{TSz}, \text{Tw})}, \frac{F(S^2z, \text{Sw})}{F(\text{TSz}, \text{Tw})} \]

\[= \max \left\{ \frac{F(\text{Sz}, \text{w})}{F(\text{Sz}, \text{w})}, \frac{F(\text{w}, \text{Sz})}{F(\text{Sz}, \text{w})}, F(\text{Sz}, \text{w}) \right\} \]

or

\[F(\text{Sz}, \text{w}) < F(\text{Sz}, \text{w}) \text{ a contradiction, implies S and T} \]

has a unique common fixed point.

Theorem 6: If in theorem 5, contractive condition (3.3.4) is replaced by

\[(3.3.5) F(\text{Tx}, \text{Ty}) < \frac{\max \left\{ F(\text{Sx}, \text{Tx}) F(\text{Sy}, \text{Ty}), F(\text{Sx}, \text{Ty}) F(\text{Sy}, \text{Tx}) \right\}}{\max \left\{ F(\text{Sx}, \text{Sy}), F(\text{Tx}, \text{Ty}) \right\}} \]

for \(\text{Sx} \neq \text{Sy} \) and \(\text{Tx} \neq \text{Ty} \). Then S and T have a unique common fixed point.

Proof: We shall define the set \(H \) in similar way and can prove \(\text{SH} = H = \text{TH} \), as in the proof of theorem 4. The real valued mapping \(\phi \) on \(H \) given by \(\phi(x) = F(\text{Sx}, \text{Tx}) \) is lower semi-continuous and hence attains its infimum at \(u \) of \(H \). There exists \(v \in H \) such that \(u = \text{Sv} \). Suppose there is no point \(x \) in \(X \) such that \(\text{Sx} = \text{Tx} \). By applying (3.3.5),

\[F(\text{STv}, \text{T}^2\text{v}) = F(\text{TSv}, \text{ITv}) \]

\[< \frac{\max \left\{ F(S^2\text{v}, \text{TSv}) F(\text{STv}, \text{T}^2\text{v}), F(S^2\text{v}, \text{T}^2\text{v}) F(\text{STv}, \text{TSv}) \right\}}{\max \left\{ F(S^2\text{v}, \text{STv}), F(\text{TSv}, \text{T}^2\text{v}) \right\}} \]
implies

Either \(F(STv, T^2v) < F(S^2v, STv) \) or \(F(STv, T^2v) < F(S^2v, TSv) \) implies \(\emptyset(Tv) < \emptyset(Sv) = \emptyset(u) \), a contradiction since \(\emptyset(u) \) is the infimum. Therefore there exists \(z \in H \) such that \(Sz = Tz \) and hence \(S^2z = STz = TSz \).

Let \(S^2z \neq Sz \) by applying (3.3.5)

\[
F(S^2z, Sz) = F(TSz, Tz)
\]

\[
\frac{\max \{F(S^2z, Tz), F(Sz, Tz), F(S^2z, Tz) \} \cdot F(Sz, TSz)}{\max \{F(S^2z, Sz), F(TSz, Tz) \}} < \frac{\max \{F(S^2z, Sz) \} \cdot F(Sz, Sz)}{\max \{F(S^2z, Sz), F(S^2z, Sz) \}}
\]

In each case, we get

\(F(S^2z, Sz) < F(S^2z, Sz) \) a contradiction which implies that \(Sz = S^2z = TSz \).

Thus \(Sz \) is a common fixed point of \(S \) and \(T \).

Now for uniqueness, let \(w \) be another common fixed point of \(S \) and \(T \).
\[F(Sz, w) = F(TSz, Tw) \]

\[
\max \left\{ \frac{F(S^2z, TSz) F(Sw, Tw), F(S^2z, Tw) F(Sw, TSz)}{\max \{ F(S^2z, Sw), F(TSz, Tw) \}} \right\}
\]

\[
= \frac{\max \{ F(Sz, Sz) F(w, w), F(Sz, w) F(w, Sz) \}}{\max \{ F(Sz, w), F(Sz, w) \}}
\]

In each case, we have

\[F(Sz, w) < F(Sz, w) \], a contradiction, which implies \(S \) and \(T \) have a unique common fixed point.

This completes the proof.