CHAPTER VII

FIXED POINT THEOREMS IN NONARCHIMEDEAN MENGERS PROBABILISTIC METRIC SPACE
CHAPTER VII

FIXED POINT THEOREMS IN NONARCHIMEDEAN

MENGER PROBABILISTIC METRIC SPACE

7.1. In the present chapter we extend some common fixed point theorems obtained by Chang [4] for single-valued and multi-valued mappings in non-archimedean Menger PM-space.

Before the statement of our results, we mention the following lemmas, which are required in the sequel.

Lemma 1 (Schweizer and Sklar [2]). \(\Delta \) is a strictly increasing Archimedean t-norm, if and only if

\[
\Delta(s,t) = g^{-1}[g(s) + g(t)], \text{ for all } s,t \in [0,1],
\]

where \(g : [0,1] \to [0,\infty) \) is a continuous and strictly decreasing function with \(g(1) = 0, g(0) = +\infty \), and \(g^{-1} \) is the quasi-inverse of \(g \), i.e.

\[
gog^{-1}(t) = t, \text{ for all } t \in \text{Rang}(g) \text{ (the range of } g).\]

Lemma 2 (Chang [4]). Let \(\Phi(t) \) satisfy condition \(\Phi_1 \) or \(\Phi_2 \), then
(i) $\tilde{\Phi}(t) < t$, for all $t > 0$;

(ii) if $t \leq \tilde{\Phi}(t)$, then $t = 0$.

Lemma 3 (Chang [4]). Let $A \in \mathcal{A}$, and $x, y \in E$. Then

(i) $F_{x,A}(t) = 1$, for all $t > 0$, if and only if $x \in A$;

(ii) $F_{x,A}(\max(t_1, t_2)) \geq \Delta(F_{x,y}(t_1), F_{y,A}(t_2))$, for all $t_1, t_2 \geq 0$;

(iii) For any $B \in \mathcal{J}$, $F_{x,B}(t) \geq F_{A,B}(t), x \in A$.

Theorem 1. Let $(E, \tilde{\Phi}, \Delta)$ be a complete nonarchimedean Menger PM-space, Δ a strictly increasing Archimedean t-norm. Let $\{S_n\}_{n=1}^{\infty}$ be a sequence of mappings and T be a continuous mapping of E into itself. Suppose that each S_i commutes with T for all $i \in \mathbb{Z}^+$ (the set of all positive integers) and for all $x, y \in E$ and any $t > 0$, $F_{x,y}(t) \neq 0$, and that for any $i, j \in \mathbb{Z}^+$, $i \neq j$ and any $x, y \in E$ the condition holds:

$$(7.1.2) \quad g(F_{S_i x, S_j y}(t)) \leq \tilde{\Phi}(\max\{ g(F_{T x, T y}(t)), g(F_{T x, S_j x}(t)), g(F_{T y, S_j y}(t)), g(F_{T x, S_i x}(t)) \})$$

for all $t > 0$;

where g is the function defined by (7.1.1) and $\tilde{\Phi}$ satisfies the...
condition \((\phi_2) \). Suppose further that there exists an \(x_0 \in E \) such that the sequence \(\{ y_n \}_{n=1}^{\infty} \) defined by

\[
y_n = T x_n = S_n x_{n-1}, \quad n \geq 1
\]

satisfies the following condition.

\[
(7.1.3) \sup_{n \geq q} \{ g(F_{y_0, y_n} (t)) \} < + \infty, \quad \text{for all } t > 0
\]

Then \(\{ S_n \}_{n=1}^{\infty} \) and \(T \) have a unique common fixed point in \(E \).

Proof. Similar to the proof of Chang ([4], Theorem 3), it can be easily shown that for any \(n \in \mathbb{Z}^+ \).

\[
(7.1.4) \quad g(F_{y_n, y_{n+1}} (t)) \leq \Phi^n (\max \{ g(F_{y_0, y_1} (t)), \ldots, g(F_{y_0, y_n} (t)), \ldots, g(F_{y_0, y_{n+1}} (t)) \}), \quad \text{for all } t > 0.
\]

Now we prove that \(\{ y_n \} \) is a Cauchy sequence of \(E \).

Applying (7.1.1) and (1.2.11), we have

\[
g(F_{y_n, y_{n+m}} (t)) \leq g(\Delta(F_{y_n, y_{n+1}} (t)), F_{y_{n+1}, y_{n+m}} (t))
\]

-103-
\begin{align*}
&= g(F_{y_n, y_{n+1}}(t)) + g(F_{y_{n+1}, y_{n+m}}(t)) \\
&\leq g(F_{y_n, y_{n+1}}(t)) + \ldots \\
&\quad + g(F_{y_{n+m-1}, y_{n+m}}(t)), \text{ for all } t > 0.
\end{align*}

Taking

\[u_o(t) = \sup_{n \geq 1}\{g(F_{y_{o}, y_{n}}(t))\}, \]

by (7.1.3) we have

\[u_o(t) < + \infty, \text{ for all } t > 0. \]

By (7.1.4) and (7.1.5) it follows that

\[g(F_{y_n, y_{n+m}}(t)) \leq \sum_{i=1}^{n+m-1} \Phi^i(u_o(t)) \to 0 \text{ as } n \to \infty, \]

for all \(m \in \mathbb{Z}^+, t > 0, \) and therefore

\[F_{y_n, y_{n+m}}(t) \to 1 \text{ as } n, m \to \infty, \text{ for all } t > 0. \]
Thus \(\{y_n\} \) is a Cauchy sequence. Since \(E \) is complete, we assume that

\[
y_n = T x_n \rightarrow z \in E.
\]

Consequently,

\[
S_n x_{n-1} \rightarrow z.
\]

Since \(T \) is continuous and \(S_n \) commutes with \(T \) for all \(n \in \mathbb{Z}^+ \), we have

\[
TT x_n \rightarrow Tz \text{ and } S_n T x_{n-1} = T S_n x_{n-1} \rightarrow Tz.
\]

for all \(n \in \mathbb{Z}^+ \).

Next, we prove that \(z \) is a common fixed point of \(\{S_n\}_{n=1}^{\infty} \) and \(T \).

In fact, for arbitrary given \(i \in \mathbb{Z}^+ \), any \(n \in \mathbb{Z}^+ \), \(n > i \), and any \(t > 0 \),

\[
g(F_{S t z, T z}(t)) \leq g(F_{S t z, S_T x_{n-1}}(t)) + g(F_{S_T x_{n-1}, T z}(t))
\]

-105-
\[
\leq \bar{\Phi} \left(\max\{g(F_{Tz,TTx_{n-1}}(t)), g(F_{Tz,S_{i,n-1},Tz}(t)), \\
g(F_{TTx_{n-1},S_{i,n-1},Tz}(t)), g(F_{Tz,S_{i,n-1},Tz}(t)), \\
g(F_{TTx_{n-1},S_{i,n-1},Tz}(t)), g(F_{S_{i,n-1},Tz}(t)) \right) + g(F_{S_{i,n-1},Tz}(t)),
\]
for all \(t > 0 \).

Letting \(n \to \infty \) and using the continuity of \(g \) and the right continuity of \(\bar{\Phi} \), we get

\[
g(F_{S_{i,z},Tz}(t)) \leq \bar{\Phi}(g(F_{S_{i,z},Tz}(t))
\]
for all \(t > 0 \).

Now Lemma 2, gives

\[
g(F_{S_{i,z},Tz}(t)) = 0,
\]
for all \(t > 0 \) and therefore
\[F_{S_i^z, Tz}(t) = 1 \text{ for all } t > 0. \]

Hence \(S_i^z = Tz. \)

Further, we have

\[g(F_{z, S_i^z}(t)) \leq g(F_{z, y_n'}(t)) + g(F_{y_n', S_i^z}(t)) \]

\[= g(F_{z, y_n}(t)) + g(F_{S_n x_{n-1}, S_i^z}(t)) \]

\[\leq g(F_{z, y_n}(t)) + \bar{\Phi}(\max\{g(F_{y_{n-1}, Tz}(t)), \]

\[g(F_{y_{n-1}, y_n}(t)), g(F_{Tz, S_i^z}(t)), \]

\[g(F_{y_{n-1}, S_i^z}(t)), g(F_{Tz, y_n}(t))\}), \]

\[g(F_{y_{n-1}, S_i^z}(t)) \leq g(F_{y_{n-1}^z, Tz}(t)) + g(F_{z, S_i^z}(t)). \]

Substituting (7.1.7) into (7.1.6), letting \(n \to \infty \) and using the continuity of \(g \) and the right continuity of \(\bar{\Phi} \), we have
\[g(\text{F}_{z,S_i^z}(t)) \leq \Phi (g(\text{F}_{z,S_i^z}(t))). \text{ for all } t > 0. \]

Now by Lemma 2 yields
\[g(\text{F}_{z,S_i^z}(t)) = 0 \]
for all \(t > 0 \) and therefore
\[\text{F}_{z,S_i^z}(t) = 1, \text{ for all } t > 0. \]
Hence
\[z = S_i^z. \]
Since \(i \in Z^+ \) is arbitrary, it follows that \(z \) is a common fixed point of \((S_n^i)_{n=1}^\infty \) and \(T \).
It can be easily proved that \(z \) is unique.

COROLLARY 1. On taking \(T = I \) (Identity mapping) we get Theorem 3 of Chang [4].

THEOREM 2. Let \((S_n^i) \) and \((T_n^i) : E \rightarrow \mathcal{L} \) be sequences of multivalued mappings. Suppose that for any \(x,y \in E \), \(t > 0 \), \(F_{x,y}(t) \neq 0 \). Suppose further that for any \(x,y \in E \), and \(i,j \in Z^+ \), \(i \neq j \) and any...
t > 0 the following condition holds:

\[
(7.1.8) \quad g(F_{S_i,x}, T_{j,y} (t)) \leq \Phi \left(g(F_{x,y} (t)), g(F_{x,S_i x} (t)), g(F_{y,T_j y} (t)), \\
g(F_{x,T_j y} (t)), g(F_{y,S_i x} (t)) \right),
\]

where \(\Phi : [0, \infty)^5 \rightarrow [0, \infty) \) is nondecreasing for each variable, right-continuous and for any \(t \geq 0 \),

\[
\Psi(t) = \max\{ \Phi(t,t,t,2t,0), \Phi(t,t,t,0,2t), \Phi(0,0,t,t,0), \\
\Phi(0,t,0,0,0) \} < t,
\]

where the function \(\Psi(t) : [0, \infty) \rightarrow [0, \infty) \) is nondecreasing, right-continuous and

\[
\sum_{n=1}^{\infty} \Psi^n(t) < +\infty, \text{ for all } t > 0.
\]

Suppose further that there exists an \(x_0 \in E \) and the sequence \(\{x_n\} \),

where

\[
x_{2n-1} \in S_n x_{2n-2} \text{ and } x_{2n} \in T_n x_{2n-1}, \quad n \geq 1
\]

\[
(7.1.9) \quad g(F_{x_{2n-1}, x_{2n}} (t)) \leq g(F_{S_n x_{2n-2}, T_n x_{2n-1}} (t))
\]

and
\[(7.1.10)\quad g(F_{x_{2n}x_{2n+1}}(t)) \leq g(F_{S_nx_{2n-2}T_nx_{2n-1}}(t)),\]
\[n = 1, 2, \ldots, \quad t > 0.\]

Then \(\{S_n\}_{n=1}^{\infty}\) and \(\{T_n\}_{n=1}^{\infty}\) have a common fixed point in \(E\).

Proof. First we prove that \(\{x_n\}\) is a Cauchy sequence of \(E\).

Applying (7.1.8), (7.1.9), (1.2.13) and (1.2.14), for any \(n \in \mathbb{Z}^+\) and \(t > 0\), we have

\[(7.1.11)\quad g(F_{x_{2n-1}x_{2n}}(t)) \leq g(F_{S_nx_{2n-2}T_nx_{2n-1}}(t))\]
\[\leq \Phi(g(F_{x_{2n-2}x_{2n-1}}(t)), g(F_{x_{2n-2}x_{2n-1}}(t)),\]
\[g(F_{x_{2n-1}x_{2n}}(t)), g(F_{x_{2n-1}x_{2n}}(t)),\]
\[g(F_{x_{2n-1}x_{2n-1}}(t))).\]

If there exists some \(t_0 > 0\) such that

\[g(F_{x_{2n-2}x_{2n-1}}(t_0)) < g(F_{x_{2n-1}x_{2n}}(t_0)),\]

(7.1.11) yields
g(F_{x_{2n-1},x_{2n}}(t_0)) \leq \Phi (g(F_{x_{2n-1},x_{2n}}(t_0)),
\begin{align*}
g(F_{x_{2n-1},x_{2n}}(t_0)),
g(F_{x_{2n-1},x_{2n}}(t_0)),
2g(F_{x_{2n-1},x_{2n}}(t_0),0)
\end{align*}
\leq \Psi (g(F_{x_{2n-1},x_{2n}}(t_0))
\leq g(F_{x_{2n-1}',x_{2n}}(t_0))
\text{a contradiction.}

Therefore for any } t > 0,
\begin{align*}
g(F_{x_{2n-1},x_{2n}}(t)) \leq g(F_{x_{2n-2},x_{2n-1}}(t))
\end{align*}

Similarly, by (7.1.8), (7.1.10), (1.2.13) and (1.2.14) we have
\begin{align*}
g(F_{x_{2n},x_{2n+1}}(t)) \leq g(F_{x_{2n-1},x_{2n}}(t))
\end{align*}

Therefore in view of (7.1.11), we get
\begin{align*}
g(F_{x_{2n-1}',x_{2n}}(t)) \leq \Phi (g(F_{x_{2n-2},x_{2n-1}}(t)),
g(F_{x_{2n-2},x_{2n-1}}(t)),
g(F_{x_{2n-2},x_{2n-1}}(t)),
2g(F_{x_{2n-2},x_{2n-1}}(t),0)
\end{align*}
\[\leq \psi \left(g(F_{x_{2n+1}x_{2n}})(t) \right) \]

Similarly

\[g(F_{x_{2n+1}x_{2n}})(t) \leq \psi \left(g(F_{x_{2n-1}x_{2n}})(t) \right). \]

In general, for any \(t > 0 \),

\[g(F_{x_nx_{n+1}})(t) \leq \psi \left(g(F_{x_{2n-1}x_{2n}})(t) \right) \leq \psi^m(g(F_{x_0x_1})(t)), \text{ for all } t > 0, \]

and so for any \(n, m \in \mathbb{Z}^+ \)

\[g(F_{x_nx_{n+m}})(t) \leq g(F_{x_nx_{n+1}})(t) + \psi^m(g(F_{x_{2n-1}x_{2n}})(t)) \leq \sum_{i=n}^{n+m-1} \psi^i(g(F_{x_0x_1})(t))) \rightarrow 0 \text{ as } n \rightarrow \infty \]

for all \(m \in \mathbb{Z}^+ \) and for all \(t > 0 \).

This implies that

\[F_{x_nx_{n+m}}(t) \rightarrow 1 \text{ for all } t > 0. \]
Therefore \(\{x_n\} \) is a Cauchy sequence in \(E \) and since \(E \) is complete it converges to a point \(z \in E \).

Consequently, the subsequences \(\{x_{2n-1}\} \) and \(\{x_{2n}\} \) also converge to \(z \).

Now we prove that \(z \) is a common fixed point of \(\{S_n\}_{n=1}^{\infty} \) and \(\{T_n\}_{n=1}^{\infty} \). In fact, for any \(i,n \in \mathbb{Z}^+ \), \(n > i \), by Lemma 3, (7.1.1) and (7.1.8) we have

\[
g(F_{z,T_i,z}^i(t)) \leq g(F_{z,x_{2n-1}}(t)) + g(F_{x_{2n-1},T_i,z}^i(t))
\]

\[
\leq g(F_{z,x_{2n-1}}(t)) + g(F_{s_n^{x_{2n-2}},T_i,z}^i(t))
\]

\[
\leq g(F_{z,x_{2n-1}}(t)) + \Phi(g(F_{x_{2n-2},z}^{x_{2n-2}}(t)), g(F_{z,T_i,z}(t)), g(F_{x_{2n-2},T_i,z}(t)), g(F_{z,x_{2n-1}}(t)))
\]

for any \(t > 0 \).

Letting \(n \to \infty \) and considering the continuity of \(g \) and the right continuity of \(\Phi \), we obtain

\[
g(F_{z,T_i,z}^i(t)) \leq \Phi(0,0,g(F_{z,T_i,z}(t)), g(F_{z,T_i,z}(t)), 0)
\]
\[\psi(g(F_{z,T_i z})(t)) \leq \psi(F_{z,T_i z}(t)) \quad \text{for all } t > 0, \]

and so

\[F_{z,T_i z}(t) = 1 \quad \text{for all } t > 0. \]

This shows that \(z \in T_i z \) for all \(i \in Z^+ \).

Similarly \(z \in S_i z \) for all \(i \in Z^+ \).

Therefore, \(z \) is a common fixed point of \(\{S_n\}_{n=1}^\infty \) and \(\{T_n\}_{n=1}^\infty \). This completes the proof.

Corollary 2. If we take \(S_n = T_n \) for all \(n \in Z^+ \) in Theorem 2, we obtain Theorem 5 of Chang [4].