Contents

Chapter 1

1.1 Introduction 1

1.2 Chirality: an integral part of life 2

1.3 Methods to synthesized optically pure molecules 3

1.3.1 Resolution of the racemates 4

1.3.1.1 Resolution by crystallization 4

1.3.1.2 Resolution with resolving agent 5

1.3.1.3 Resolution by chromatography 5

1.3.1.4 Kinetic resolution 5

1.3.2 The chiral pool synthesis 6

1.3.3 Enantioselective synthesis 7

1.3.3.1 Chiral Auxiliary 7

1.3.3.2 Bio-catalysis 7

1.3.3.3 Chiral Catalysis 8

1.3.3.4 The cause of enantioinduction in chiral catalysis 9

1.4 Oxidative kinetic resolution (OKR) of secondary alcohols 9

1.4.1 OKR of secondary alcohols using molecular oxygen 10

1.4.2 OKR of secondary alcohols using acetone as hydrogen acceptor 12

1.4.3 OKR of secondary alcohols using PhI(OAc)$_2$/PhIO as oxidant 13

1.4.3.1 OKR of secondary alcohols using homogeneous Mn(III) salen complex 13

1.4.3.2 OKR of secondary alcohols using recyclable homogeneous Mn(III) salen complex 14

1.4.3.3 OKR of secondary alcohols using heterogeneous Mn(III) salen complex 16

1.4.4 OKR of secondary alcohols using NBS as oxidant 18

1.5 Importance of optically pure sulfoxide 18

1.6 General routes for the synthesis of optically pure sulfoxides 19

1.6.1 Chiral auxiliary directed synthesis of sulfoxides 19

1.6.2 Catalytic enantioselective synthesis of sulfoxides 20

1.6.2.1 Enantioselective sulfoxidation with Ti catalyst 21

1.6.2.2 Enantioselective sulfoxidation with Ti-chiral hydroperoxide 22
Chapter 2

2.1 Introduction
2.2 Experimental Section
 2.2.1 General methods and materials
 2.2.2 Synthesis of macrocyclic salen ligands 1’
 2.2.2.1 Synthesis of B
 2.2.2.2 Synthesis of C
 2.2.2.3 Synthesis of D
 2.2.3 Synthesis of chiral macrocyclic ligands
 2.2.3.1 Synthesis of chiral macrocyclic ligand 1’
 2.2.3.2 Synthesis of chiral macrocyclic ligand 2’
 2.2.3.3 Synthesis of chiral macrocyclic ligand 3’
 2.2.3.4 Synthesis of chiral macrocyclic ligands (RR,R)-4’ and (RR,S)-4’
 2.2.4 Synthesis of chiral macrocyclic Mn(III) salen complexes
 2.2.4.1 Synthesis of chiral macrocyclic Mn(III) salen complex 1
 2.2.4.2 Synthesis of chiral macrocyclic Mn(III) salen complex 2
 2.2.4.3 Synthesis of chiral macrocyclic Mn(III) salen complex 3
 2.2.4.4 Synthesis of chiral macrocyclic Mn(III) salen complex 4
 2.2.5 Typical procedure for the OKR of racemic secondary alcohols with 2-PhI(OAc)₂ system
 2.2.6 Typical procedure for the OKR of racemic secondary alcohols with 2-NBS system
 2.2.7 HPLC and GC condition of the secondary alcohols
2.3 Results and Discussion
 2.3.1 Oxidative Kinetic Resolution with monomeric Mn(III) salen complex
2.3.2 OKR using dimeric macrocyclic Mn(III) salen complex 8
2.4 Possible route of the catalytic reaction with PhI(OAc)₂
2.5 Recyclability of the catalyst
2.6 Conclusion
2.7 References

Chapter 3

3.1 Introduction

3.2 Experimental

3.2.1 General methods and materials
3.2.2 Synthesis of amino alcohol derived Schiff base ligands 5'-7'

3.2.2.1 Synthesis of 5’a
3.2.2.2 Synthesis of 5’b
3.2.2.3 Synthesis of 5’c
3.2.2.4 Synthesis of 5’d
3.2.2.5 Synthesis of 5’e
3.2.2.6 Synthesis of 5’f
3.2.2.7 Synthesis of 5’g
3.2.2.8 Synthesis of 5’h
3.2.2.9 Synthesis of 5’i
3.2.2.10 Synthesis of 6’
3.2.2.11 Synthesis of 7’

3.2.3 General procedure for asymmetric sulfoxidation
3.2.4 Reaction procedure to study the kinetics of the reaction
3.2.5 Characterization data and HPLC condition of the Sulfoxides

3.3 Results and Discussion

3.3.1 Temperature effect on in situ generated complex catalysed reaction
3.3.2 Solvent and catalyst screening
3.3.3 Fine tuning of catalytic activity
3.3.4 Scope of catalysis

3.4 Kinetics of the reaction

3.4.1 Dependence of the rate on the individual concentration of substrate and reagents
Chapter 4

4.1 Introduction 102
4.2 Experimental Section 103
 4.2.1 General methods and materials 103
 4.2.2 Synthesis of amino alcohol derived Schiff base ligands 8'-11' 104
 4.2.2.1 Procedure for the synthesis of ligand 8' 104
 4.2.2.2 Procedure for the synthesis of ligand 9' 105
 4.2.2.3 Procedure for the synthesis of ligand 10' 105
 4.2.2.4 Procedure for the synthesis of ligand 11' 106
 4.2.3 General procedure for asymmetric sulfoxidation 107
4.3 Results and Discussion 107
4.4 Probable catalytic route of the reaction 117
4.5 Conclusion 121
4.6 References 122

Chapter 5

5.1 Introduction 125
5.2 Experimental Section 125
 5.2.1 General methods and materials 125
 5.2.2 Preparation of 3-tert-butyl-salicyaldehyde (F) 126
 5.2.3 Synthesis of Bis aldehyde G 127
 5.2.4 Synthesis of amino alcohol derived Schiff base ligands 12'-16' 127
 5.2.4.1 Synthesis of amino alcohol derived Schiff base ligands 12' 128
 5.2.4.2 Synthesis of amino alcohol derived Schiff base ligands 13' 128
 5.2.4.3 Synthesis of amino alcohol derived Schiff base ligands 14' 129
 5.2.4.4 Synthesis of amino alcohol derived Schiff base ligands 15' 130
 5.2.4.5 Synthesis of amino alcohol derived Schiff base ligands 16' 130
5.2.5 General procedure for the ligand screening for asymmetric sulfoxidation

5.3 Results and Discussion

5.4 Conclusion

5.5 References

Conclusions
List of publications
Conferences / Symposia
Awards
First page of publications