CHAPTER IV

FIXED POINT THEOREMS FOR
MAPPINGS IN BIMETRIC SPACE
CHAPTER IV

FIXED POINT THEOREMS FOR MAPPINGS IN BIMETRIC SPACE

4.1. The concept of Bimetric space has been introduced by Maia [131] and many authors like Iseki [88], Mishra [134], Rus [169], Rhoades [159] etc., have studied the contractive and contraction type mapping in Bimetric space. Maia [131] obtained the following result -

THEOREM A: Let \(X \) be a metric space with two metrics \(d_1 \) and \(d \) such that

\[(4.1.1)\] \(d_1(x,y) \leq d(x,y), \text{ for all } x,y \text{ in } X, \)

\[(4.1.2)\] \(X \) is complete with respect to \(d_1, \)

\[(4.1.3)\] the mapping \(f:X \rightarrow X \) is continuous with respect to \(d_1 \) and

\[(4.1.4)\] \(d(f(x),f(y)) \leq kd(x,y) \)

for all \(x,y \) in \(X \), where \(0 \leq k < 1 \), then \(T \) has a unique fixed point.

Afterward Iseki [88] generalized the above result as follows -
THEOREM B : Let \(X \) be a metric space with two metrics \(d_1 \) and \(d \) such that (4.1.1) and (4.1.2) hold and

(4.1.5) two mappings \(f, g : X \rightarrow X \) are continuous with respect to \(d_1 \) and

(4.1.6) \(d(f(x), g(y)) \leq a_1 d(x, y) + a_2 [d(x, f(x)) + d(y, g(y))] + a_3 [d(x, g(y)) + d(y, f(x))] \)

for all \(x, y \) in \(X \), where \(a_1, a_2, a_3 \) are non-negative and \(a_1 + 2a_2 + 2a_3 < 1 \). Then \(f \) and \(g \) have a unique common fixed point.

4.2. In this section, we establish some fixed point theorems in Bimetric space.

THEOREM 1 : Let \(X \) be a metric space with two metrics \(d_1 \) and \(d \) such that (4.1.1), (4.1.2), (4.1.5) hold and

(4.2.1) \(d(f(x), g(y)) \leq a_1 d(x, y) + a_2 [d(x, f(x)) + d(y, g(y))] \)
\[+ a_3[\text{d}(x, g(y)) + \text{d}(y, f(x))] \]
\[+ a_4[\frac{\text{d}(x, g(y)) \text{d}(x, y)}{\text{d}(x, y) + \text{d}(y, g(y))}] \]

for all \(x, y \) in \(X \), where \(a_1, a_2, a_3, a_4 \) are non-negative and \(a_1 + 2a_2 + 2a_3 + a_4 < 1 \). Then \(f \) and \(g \) have a unique common fixed point.

Proof: Let \(x_0 \) be an arbitrary point of \(X \) and define a sequence as follows -

\[x_1 = f(x_0), x_2 = g(x_1), \ldots \]

i.e.

\[x_{2n+1} = f(x_{2n}), x_{2n+2} = g(x_{2n+1}), n = 0, 1, 2, \ldots \]

By the inequality (4.2.1), we have

\[\text{d}(x_1, x_2) = \text{d}(f(x_0), g(x_1)) \]
\[\leq a_1 \text{d}(x_0, x_1) \]
\[+ a_2[\text{d}(x_0, f(x_0)) + \text{d}(x_1, g(x_1))] \]
\[+ a_3[\text{d}(x_0, g(x_1)) + \text{d}(x_1, f(x_0))] \]
\[+ a_4[\frac{\text{d}(x_0, g(x_1)) \text{d}(x_0, x_1)}{\text{d}(x_0, x_1) + \text{d}(x_1, g(x_1))}] \]
i.e.

\[d(x_1, x_2) \leq a_1 d(x_0, x_1) \]

\[+ a_2 [d(x_0, x_1) + d(x_1, x_2)] \]

\[+ a_3 [d(x_0, x_2) + d(x_1, x_1)] \]

\[+ a_4 \left[\frac{d(x_0, x_2) d(x_0, x_1)}{d(x_0, x_1) + d(x_1, x_2)} \right]. \]

Or,

\[d(x_1, x_2) \leq \frac{a_1 + a_2 + a_3 + a_4}{1 - a_2 - a_3} d(x_0, x_1) \]

\[= h \cdot d(x_0, x_1), \]

where \(h = \frac{a_1 + a_2 + a_3 + a_4}{1 - a_2 - a_3} < 1. \)

In general,

\[d(x_n, x_{n+1}) \leq h^n d(x_0, x_1). \]

Hence,

\[d(x_n, x_m) \leq \frac{h^n}{1-h} d(x_0, x_1), \text{ for } m > n. \]

It follows that \(\{x_n\} \) is a Cauchy sequence with respect to \(d \) and therefore by condition (4.1.1), we have \(\{x_n\} \)
is a Cauchy sequence with respect to \(d_1 \). Since \(X \) is complete under condition (4.1.2), so \(\{x_n\} \) has a limit \(z \) in \(X \), i.e. \(\lim_{n} (x_{2n}) = z \).

By the continuity of \(f \) with respect to metric \(d_1 \), we have

\[
f(z) = f \lim_{n} (x_{2n}) = \lim_{n} f(x_{2n}) = \lim_{n} (x_{2n+1}) = z.
\]

Similarly by the continuity of \(g \) with respect to metric \(d_1 \), it can be easily shown that \(g(z) = z \). Hence \(z \) is a common fixed point of \(f \) and \(g \).

Now to show the uniqueness of \(z \), let \(w \) be another common fixed point of \(f \) and \(g \), if possible different from \(z \). Then by condition (4.2.1), we have

\[
d(z, w) = d(f z, g w)
\]

\[
\leq a_1 d(z, w)
\]

\[
+ a_2 [d(z, f(z)) + d(w, g(w))]
\]

\[
+ a_3 [d(z, g(w)) + d(w, f(z))]
\]

\[
+ a_4 \left[\frac{d(z, g(w)) d(z, w)}{d(z, w) + d(w, g(w))} \right]
\]
i.e.
\[d(z, w) \leq (a_1 + 2a_3 + a_4) d(z, w), \]
leading a contradiction, since \(a_1 + 2a_3 + a_4 < a_1 + 2a_2 + 2a_3 + a_4 < 1. \)
Thus \(z = w. \)

This completes the proof of the Theorem 1.

THEOREM 2: Let \(X \) be a metric space with two metrics \(d_1 \) and \(d \) and \(T_i \) \((i = 1, 2, 3, \ldots, k)\) a finite family of continuous mappings of \(X \) into itself. Suppose that (4.1.1), (4.1.2) hold and

(4.2.2) \(T_i T_j = T_j T_i \) \((i, j = 1, 2, 3, \ldots, k)\),

(4.2.3) there are two systems of positive integers \((m_1, m_2, \ldots, m_k)\) and \((n_1, n_2, \ldots, n_k)\) such that

(4.2.4) \[
\begin{align*}
& d(T_1^{m_1} T_2^{m_2} \cdots T_k^{m_k} (x), T_1^{n_1} T_2^{n_2} \cdots T_k^{n_k} (y)) \\
& \leq a_1 d(x, y) \\
& + a_2 [d(x, T_1^{m_1} T_2^{m_2} \cdots T_k^{m_k} (x)) + d(y, T_1^{n_1} T_2^{n_2} \cdots T_k^{n_k} (y))]
\end{align*}
\]
for all \(x, y \) in \(X \), where \(a_1, a_2, a_3, a_4 \) are non-negative and
\(a_1 + 2a_2 + 2a_3 + a_4 < 1 \). Then \(T_i (i = 1, 2, \ldots, k) \) has a
unique common fixed point.

PROOF. Let \(f = T_1^{m_1}T_2^{m_2} \cdots T_k^{m_k} \), \(g = T_1^{n_1}T_2^{n_2} \cdots T_k^{n_k} \).

Then \(f \) and \(g \) are continuous. Therefore by Theorem 1, \(f \) and
\(g \) have a unique common fixed point \(z \) in \(X \).

\[f(z) = g(z) = z. \]

Then for each \(i \), \(T_i (f(z)) = T_i (g(z)) = T_i (z) \).

By the condition (4.2.2), we have

\[f(T_i(z)) = g(T_i(z)) = T_i(z). \]

Therefore \(T_i(z) (i = 1, 2, \ldots, k) \) are common fixed point
of \(f \) and \(g \). From the uniqueness of the common fixed point
of \(f \) and \(g \), we have

\[T_i(z) = z (i = 1, 2, \ldots, k). \]
This completes the proof of the Theorem 2.

REMARKS :

(1) If we put \(f = g \) and \(a_2 = a_3 = a_4 = 0 \) in Theorem 1, we obtain Theorem A.

(2) If we put \(a_4 = 0 \) in Theorem 1, we obtain Theorem B.

THEOREM 3 : Let \(X \) be a metric space with two metrics \(d_1 \) and \(d \) and \(f_n (n = 1, 2, 3, \ldots) \) be a sequence of mappings of \(X \) into itself, such that (4.1.1), (4.1.2) hold and

(4.2.5) \(f_0 \) is continuous with respect to \(d_1 \).

(4.2.6) \[
[d(f_0x,f_ny)]^2 \leq a_1[d(x,f_0x)d(y,f_ny)+d(x,f_ny)d(y,f_0x)] \\
+ a_2[d(x,f_0x)d(y,f_0x)+d(x,f_ny)d(y,f_ny)] \\
+ a_3[d(x,y)d(f_0x,f_ny)]
\]

for all \(x, y \) in \(X \), where \(a_1, a_2, a_3 \) are non-negative and

\(a_1 + 2a_2 + a_3 < 1, a_2 < 1, a_1 + a_3 < 1 \). Then there exists a unique common fixed point of \(f_n (n = 0, 1, 2, \ldots) \) in \(X \).
Proof: Let \(x_0 \) be an arbitrary point of \(X \) and we define a sequence as follows -

\[
\begin{align*}
 x_0, x_1 &= f_0 x_0, x_2 = f_1 x_1, \ldots, x_{2n-1} = f_0 x_{2n-2}, x_{2n} = f_n x_{2n-1}, \\
 x_{2n+1} &= f_0 x_{2n}.
\end{align*}
\]

Applying (4.2.6), we have

\[
[d(x_1, x_2)]^2 = [d(f_0 x_0, f_1 x_1)]^2
\]

\[
\leq a_1 [d(x_0, f_0 x_0) d(x_1, f_1 x_1) + d(x_0, f_1 x_1) d(x_1, f_0 x_0)]
\]

\[
+ a_2 [d(x_0, f_0 x_0) d(x_1, f_0 x_0) + d(x_0, f_1 x_1) d(x_1, f_1 x_1)]
\]

\[
+ a_3 [d(x_0, x_1) d(f_0 x_0, f_1 x_1)]
\]

i.e.

\[
[d(x_1, x_2)]^2 \leq a_1 [d(x_0, x_1) d(x_1, x_2) + d(x_0, x_2) d(x_1, x_1)]
\]

\[
+ a_2 [d(x_0, x_1) d(x_1, x_1) + d(x_0, x_2) d(x_1, x_2)]
\]

\[
+ a_3 [d(x_0, x_1) d(x_1, x_2)].
\]

Thus,

\[
d(x_0, x_1) \leq \frac{a_1 + a_2 + a_3}{1 - a_2} d(x_0, x_1).\]
\[d(x_0, x_1) \leq q \cdot d(x_0, x_1), \]

where \(q = \frac{a_1 + a_2 + a_3}{1 - a_2} < 1. \)

In general,

\[d(x_n, x_{n+1}) \leq q^n d(x_0, x_1). \]

Now,

\[d(x_n, x_{n+p}) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \ldots + d(x_{n+p-1}, x_{n+p}) \]

\[\leq (q^n + q^{n+1} + \ldots + q^{n+p-1}) d(x_0, x_1) \]

\[\leq \frac{q^n}{1 - q} d(x_0, x_1) \]

\[\longrightarrow 0 \text{ as } n \longrightarrow \infty. \]

Thus \(\{x_n\} \) is a cauchy sequence. Since \(X \) is complete, \(\{x_n\} \) converges to a point \(z \) in \(X \).

i.e. \(\lim_{n \to \infty} x_n = z \).

Since \(f_0 \) is continuous, so

\[f_0 z = \lim_{n \to \infty} f_0(x_{2n}) = z. \]
Thus z is a fixed point of f_0.

We wish to show that z is a fixed point of f_n for each $n = 1, 2, \ldots$. Put $x = y = z$ in (4.2.6), then

$$[d(z, f_n z)]^2 = [d(f_0 z, f_n z)]^2$$

$$\leq a_1[d(z, f_0 z)d(z, f_n z) + d(z, f_0 z)d(z, f_0 z)] + a_2[d(z, f_0 z)d(z, f_0 z) + d(z, f_n z)d(z, f_n z)] + a_3[d(z, z)d(f_0 z, f_n z)].$$

i.e.

$$[d(z, f_n z)]^2 \leq a_2[d(z, f_n z)]^2,$$

leading to a contradiction, since $a_2 < 1$. Thus $z = f_n z$.

Hence z is a common fixed point of $f_n (n = 0, 1, 2, \ldots)$.

Now to claim its uniqueness, let w be another common fixed point of f_n, if possible different form z.

Then by (4.2.6), we have

$$[d(z, w)]^2 = [d(f_0 z, f_n w)]^2$$

$$\leq a_1[d(z, f_0 z)d(w, f_n w) + d(z, f_n w)d(w, f_0 z)].$$
+ \alpha_2 [d(z, f_0 z) d(w, f_0 z) + d(z, f_n w) d(w, f_n w)]
+ \alpha_3 [d(z, w) d(f_0 z, f_n w)]

[d(z, w)]^2 \leq (\alpha_1 + \alpha_3) [d(z, w)]^2,

again leading to a contradiction, since \alpha_1 + \alpha_3 < 1. Thus

z = w. Hence z is a unique common fixed point of f_n.

This completes the proof of the Theorem 3.

Remarks:

(1) If we put \(f_0 = E, \ f_n = F \) and \(\alpha_2 = \alpha_3 = 0 \) in Theorem 3
then we get result of Fisher [50] in complete metric space.

(2) If we put \(f_0 = E, \ f_n = F \) and \(\alpha_3 = 0 \) in Theorem 3,
then we get result of Pachpatte [144] in complete metric space.

4.3. In this section, we generalize the result of Maia [131]
and Iseki [88] for a pair of mappings involving six point of
a Bimetric space.
THEOREM 4: Let X be a metric space with two metrics d_1 and d. If f and g are two mappings of X into itself such that $(4.1.1), (4.1.2)$ and hold

$$(4.3.1) \quad d(fu_1, gu_2) \leq a_1d(u_1, u_2) + a_2[d(u_1, fu_3) + d(u_2, gu_4)] + a_3[d(u_4, fu_5) + d(u_3, gu_6)]$$

for all $u_1, u_2, u_3, u_4, u_5, u_6$ in X and a_1, a_2, a_3 are positive real numbers such that $a_1 + 2a_2 < 1, a_2 + a_3 < 1, a_1 + 2a_3 < 1$. Then f and g have a unique common fixed point.

PROOF: Let x, y in X and put $u_1 = gfx, u_2 = fgy, u_3 = gy, u_4 = fx, u_5 = x, u_6 = y$ in $(4.3.1)$, we have

$$d(fgf(x), gfg(y)) \leq a_1d(gf(x), fg(y)) + a_2[d(gf(x), fg(y)) + d(fg(y), gf(x))] + a_3[d(f(x), f(x)) + d(g(y), g(y))].$$

$$(4.3.2) \quad d(fgf(x), gfg(y)) \leq (a_1 + 2a_2)d(gf(x), fg(y)) = h d(gf(x), fg(y)), $$
where \(h = a_1 + 2a_2 < 1 \).

Now let \(x_0 \) be an arbitrary element of \(X \). Define the sequence as follows -

\[
x_n = f(x_{n-1}), \quad x_{n+1} = g(x_n), \text{ for odd natural numbers.}
\]

Now for \(x = x_{n-3} \) and \(y = x_{n-2} \), where \(n \) is odd \(\geq 3 \), by (4.3.2), we have

\[
d(x_n, x_{n+1}) \leq h d(x_{n-1}, x_n).
\]

Proceeding in this manner, we have

\[
d(x_n, x_m) < \frac{h^n}{1-h} d(x_0, x_1), \quad m > n \geq 3, \quad n \text{ is odd.}
\]

Also, when \(n \) is even, a similar discussion will help to get the same strict inequality. Since \(h < 1 \), so \(\lim_{n \to \infty} h^n = 0 \). It follows that \(\{x_n\} \) is a Cauchy sequence with respect to \(d \).

Further by condition (4.1.1), sequence \(\{x_n\} \) is a Cauchy sequence under metric \(d_1 \). Since \(X \) is complete with respect to \(d_1 \), there exists a point \(z \) in \(X \) such that

\[
\lim_{n \to \infty} (x_n) = z.
\]
We shall show that \(f(z) = z \). Suppose that \(f(z) \neq z \).

On putting \(u_1 = u_3 = u_5 = z \) and \(u_2 = u_4 = u_6 = x_n \) (when \(n \) is odd) in (4.3.2), we have

\[
\begin{align*}
d(f(z), x_{n+1}) &= d(f(z), g(x_n)) \\
&\leq a_1 d(z, x_n) \\
&\quad + a_2 [d(z, f(z)) + d(x_n, g(x_n))] \\
&\quad + a_3 [d(x_n, f(z)) + d(z, g(x_n))]
\end{align*}
\]

\[
\begin{align*}
d(f(z), x_{n+1}) &\leq a_1 d(z, x_n) \\
&\quad + a_2 [d(z, f(z)) + d(z, x_{n+1})] \\
&\quad + a_3 [d(x_n, f(z)) + d(z, x_{n+1})].
\end{align*}
\]

Taking limit as \(n \to \infty \) and noting that \(\{x_n\} \) is Cauchy, we have,

\[
\begin{align*}
d(f(z), z) &\leq a_1 d(z, z) \\
&\quad + a_2 [d(z, f(z)) + d(z, z)] \\
&\quad + a_3 [d(z, f(z)) + d(z, z)] \\
&= (a_2 + a_3) d(z, f(z)),
\end{align*}
\]

leading to a contradiction, since \(a_2 + a_3 < 1 \). Thus \(z \) is a
fixed point of T. Similarly we can show that z is a fixed point of g. Hence z is a common fixed point of f and g.

Now to claim the uniqueness of z, let w be another fixed point of f and g, if possible different from z. Putting $u_1 = u_3 = u_5 = z$ and $u_2 = u_4 = u_6 = w$ in $(4.3.3)$, we have

$$d(z, w) = d(f(z), g(w))$$

$$\leq a_1 d(z, w)$$

$$+ a_2 [d(z, f(z)) + d(w, g(w))]$$

$$+ a_3 [d(w, f(z)) + d(z, g(w))]$$

$$= (a_1 + 2a_3) d(z, w),$$

again leading to a contradiction, since $a_1 + 2a_3 < 1$.

Thus $z = w$.

This completes the proof of the Theorem 4.

Theorem 5: Let X be a metric space with two metrics d_1 and d and $f_k (k = 1, 2, 3, \ldots, n)$ be a finite family of
of mappings of \(X\) into itself. Such that (4.1.1), (4.1.2)

hold and

(4.3.3) \(f_1, f_2, \ldots, f_n\) commutes with every \(f_k\).

(4.3.4) \(d(f_1 f_2 \ldots f_n(u_1), f_n f_{n-1} \ldots f_1(u_2)) \leq a_1 d(u_1, u_2)\)

\(< a_1 d(u_1, u_2)\)

\(+ a_2[d(u_1, f_1 f_2 \ldots f_n(u_3)) + d(u_2, f_n f_{n-1} \ldots f_1(u_4))]\)

\(+ a_3[d(u_4, f_1 f_2 \ldots f_n(u_5)) + d(u_3, f_n f_{n-1} \ldots f_1(u_6))]|\)

for all \(u_1, u_2, u_3, u_4, u_5, u_6, u_6\) in \(X\) and \(a_1, a_2, a_3\) are

positive real numbers such that \(a_1 + 2a_2 < 1, a_2 + a_3 < 1,\)

\(a_1 + 2a_3 < 1\). Then \(f_k (k = 1, 2, 3, \ldots, n)\) have a unique

common fixed point in \(X\).

PROOF: Let \(f = f_1 f_2 \ldots f_n, g = f_n f_{n-1} \ldots f_1\).

Then by (4.3.3), we have

(4.3.5) \(d(f(u_1), g(u_2)) \leq a_1 d(u_1, u_2)\)

\(< a_1 d(u_1, u_2)\)

\(+ a_2[d(u_1, f(u_3)) + d(u_2, g(u_4))]\)

\(+ a_3[d(u_4, f(u_5)) + d(u_3, g(u_6))].\)
By Theorem 4, f and g have a unique common fixed point z.

i.e. \(f(z) = z = g(z) \).

For any \(f_k \), \(f_k(f(z)) = f_k(z) \).

Then by (4.3.3), we have

\[f(f_k(z)) = f_k(z). \]

So \(f_k(z) \) is a fixed point of f and g.

By putting \(u_1 = u_3 = u_5 = f_k(z) \) and \(u_2 = u_4 = u_6 = z \) in (4.3.5), we have

\[d(f_k(z), z) = d(ff_k(z), g(z)) \]

\[\leq a_1 d(f_k(z), z) \]

\[+ a_2 [d(f_k(z), ff_k(z)) + d(z, g(z))] \]

\[+ a_3 [d(z, ff_k(z)) + d(f_k(z), g(z))] \]

\[= (a_1 + 2a_3) d(f_k(z), z), \]

leading to a contradiction, since \(a_1 + 2a_3 < 1 \).

i.e. \(f_k(z) = z \) (\(k = 1, 2, 3, -\ldots, n \)). Hence z is a common fixed point of \(f_k \).
The uniqueness of fixed point can be proved easily.

This completes the proof of the Theorem 5.

REMARKS :

1. If we put \(f = g, u_1 = u_3 = u_5 = x, u_2 = u_4 = u_6 = y \) and \(a_2 = a_3 = 0 \) in Theorem 4, then we get Theorem A.

2. If we put \(u_1 = u_3 = u_5 = x, u_2 = u_4 = u_6 = y \) in Theorem 4, then we get Theorem B.