Chapter III

ON WEAKLY PAIRWISE CONTINUOUS MAPPINGS *

In a topological space the notion of weakly continuous mappings owes to Levine [45]. It is defined as follows:

DEFINITION (3.A): A mapping \(f : (X, T) \rightarrow (Y, \gamma) \) is said to be weakly continuous if for each point \(x \in X \) and each neighbourhood \(M \) of \(x \), there exists a neighbourhood \(N \) of \(x \) such that \(f(N) \subseteq \text{cl} \, M \).

These mappings have been studied later by Deb [12], Noiri [69, 69 a], Singh [98] and others. It is well known [12 a] that every continuous mapping is weakly continuous but the converse need not be true. The present chapter investigates an analogous generalization of pairwise continuity and presents its study.

WEAK PAIRWISE CONTINUITY

We introduce the new concept as follows:

DEFINITION (3.1): A mapping $f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2)$ is termed weakly pairwise continuous if for each $x \in X$ and each T_i-open set V containing $f(x)$, there exists a P_j-open set U containing x such that $f(U) \subseteq T_j$-cl V, where $i, j = 1, 2$ and $i \neq j$.

THEOREM (3.1): Every pairwise continuous mapping is weakly pairwise continuous.

PROOF: Let $f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2)$ be pairwise continuous. Let $x \in X$ and V be a T_i-open set containing $f(x)$. Since f is pairwise continuous, $f^{-1}(V)$ is P_i-open. Put $f^{-1}(V) = U$. Then U is a P_i-open set such that $f(U) = f(f^{-1}(V)) \subseteq V \subseteq T_j$-cl V. //

REMARK (3.1): A weakly pairwise continuous mapping may fail to be pairwise continuous, as is shown in the following example:

EXAMPLE (3.1): Let $X = \{a, b, c\}$ and $Y = \{x, y, z\}$. Let $P_1 = \{\emptyset, \{a\}, \{x\}\}$, $P_2 = \{\emptyset, \{b, c\}, \{x\}\}$ and $T_1 = \{\emptyset, \{x\}, \{y\}\}$, $T_2 = \{\emptyset, \{y\}, \{y\}\}$.
Then, \(f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2) \) defined by \(f(a) = x \), \(f(b) = y \), \(f(c) = z \) is weakly pairwise continuous but it is not pairwise continuous. Note that the space \((Y, T_1, T_2)\) is not pairwise regular.

The following theorem investigates a condition when weak pairwise continuity implies pairwise continuity:

Theorem (3.2): If \(f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2) \) is weakly pairwise continuous and \((Y, T_1, T_2)\) is pairwise regular then \(f \) is pairwise continuous.

Proof: Let \(V \) be any \(T_1 \)-open set and let \(x \in f^{-1}(V) \). Then \(f(x) \in V \). Since \((Y, T_1, T_2)\) is pairwise regular there exists a \(T_1 \)-open set \(M \) such that \(f(x) \in M \subseteq T_j\text{-cl } M \subseteq V \). Since \(f \) is weakly pairwise continuous and \(M \) is a \(T_1 \)-open set containing \(f(x) \), there exists a \(P_1 \)-open set \(U \) containing \(x \) such that \(f(U) \subseteq T_j\text{-cl } M \), so that \(f(U) \subseteq V \). That is, \(x \in U \subseteq f^{-1}(V) \). This shows that \(f^{-1}(V) \) is a \(P_1 \)-neighbourhood of \(x \). Consequently, \(f^{-1}(V) \) is \(P_1 \)-open. Hence, \(f \) is pairwise continuous. //

Theorems (3.1) and (3.2) yield the following:
Theorem (3.3): Let \(f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2) \) and let \((Y, T_1, T_2)\), be pairwise regular. Then the mapping \(f \) is weakly pairwise continuous iff \(f \) is pairwise continuous.

Theorem (3.4): If \(f_1 : (X_1^*, P_1^*, P_2^*) \rightarrow (Y_1^*, T_1^*, T_2^*) \) be weakly pairwise continuous then the mapping \(f : (X_1 \times X_1^* \times \prod_1 \times \prod_2) \rightarrow (Y_1 \times Y_1^* \times \prod_1^* \times \prod_2^*) \) defined by \(f((x_1, x_2)) = (f_1(x_1), f_2(x_2)) \) for each \((x_1, x_2) \in X_1 \times X_1^* \), is weakly pairwise continuous.

Proof: Let \((x_1, x_2) \in X_1 \times X_1^* \) and let \(V \) be any \(\prod_1^* \)-open set containing \(f((x_1, x_2)) \). Now there exist a \(T_1^* \)-open set \(U_1 \) and a \(T_1^* \)-open set \(U_2 \) such that \(f((x_1, x_2)) \in U_1 \times U_2 \subseteq V \).

Since \(f_1(x_1) \in U_1 \) and \(f_1 \) is weakly pairwise continuous there exists a \(P_1^* \)-open set \(V_1 \) such that \(x_1 \in V_1 \) and \(f_1(V_1) \subseteq T_1^* \)-cl \(U_1 \).

Similarly, there is a \(P_1^* \)-open set \(V_2 \) such that \(x_2 \in V_2 \) and \(f_2(V_2) \subseteq T_2^* \)-cl \(U_2 \). Now, \(f(V_1 \times V_2) = f_1(V_1) \times f_2(V_2) \subseteq T_1^* \)-cl \(U_1 \times U_2 \subseteq \prod_1^* \)-cl \(V \). Since \(V_1 \times V_2 \) is \(\prod_1^* \)-open and contains \((x_1, x_2)\), it follows that \(f \) is weakly pairwise continuous. \(\blacksquare \)
THEOREM (3.5) : Let \(f : (X_1, P_1, P_2) \rightarrow (Y_1, T_1, T_2) \) and
let \(g : (X_1, P_1, P_2) \rightarrow (X \times Y, \prod_1, \prod_2) \) be given by \(g(x) = (x, f(x)) \). Then, \(f \) is weakly pairwise continuous iff \(g \) is weakly pairwise continuous.

PROOF : Suppose that \(f \) is weakly pairwise continuous. Let \(x \in X \) and \(W \) be any \(\prod_1 \)-open set in \(X \times Y \) containing \(g(x) \).
Then there exist a \(P_1 \)-open set \(R \) and a \(T_1 \)-open set \(V \) such that \(g(x) = (x, f(x)) \in R \times V \subseteq W \). Since \(f \) is weakly pairwise continuous there exists a \(P_1 \)-open set \(U \) containing \(x \) such that \(U \subseteq R \) and \(f(U) \subseteq T_j \)-cl \(V \). Therefore, \(g(U) \subseteq R \times T_j \)-cl \(V \subseteq P_j \)-cl \(R \times T_j \)-cl \(V = \prod_j \)-cl \((R \times V) \subseteq \prod_j \)-cl \(W \). Hence \(g \) is weakly pairwise continuous.

Conversely, suppose that \(g \) is weakly pairwise continuous. Let \(x \in X \) and \(V \) be any \(T_1 \)-open set containing \(f(x) \). Then \(X \times V \) is \(\prod_1 \)-open in \(X \times Y \) and contains \(g(x) \).
Since \(g \) is weakly pairwise continuous, there exists a \(P_1 \)-open set \(U \) in \(X \) containing \(x \) such that \(g(U) \subseteq \prod_j \)-cl \((X \times V) = X \times T_j \)-cl \(V \). Thus if \(a \in U \) then \(g(a) = (a, f(a)) \in X \times T_j \)-cl \(V \), so that \(f(a) \in T_j \)-cl \(V \), showing that, \(f(U) \subseteq T_j \)-cl \(V \). Hence, \(f \) is weakly pairwise continuous. //
THEOREM (3.6): Any restriction of a weakly pairwise continuous mapping is weakly pairwise continuous.

PROOF: Let \(f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2) \) be weakly pairwise continuous and let \(A \) be a nonempty subset of \(X \). Let \(x \in A \) and \(V \) be any \(T_1 \)-open set containing \(f(x) \). Since \(f \) is weakly pairwise continuous there exists a \(P_1 \)-open set \(U \) such that \(x \in U \subseteq f^{-1}(T_1 \text{-cl } V) \). Therefore, \(x \in U \cap A \subseteq f^{-1}(T_1 \text{-cl } V) \cap A = (f/A)^{-1}(T_1 \text{-cl } V) \), so that \((f/A)(U \cap A) \subseteq T_1 \text{-cl } V \). Since \(U \cap A \) is \(P_1 \)-open in \(A \), it follows that \(f/A \) is weakly pairwise continuous. \(\Box \)

THEOREM (3.7): Let \(f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2) \) be weakly pairwise continuous and let \(A \) be a nonempty subset of \(X \). Then, \(g \equiv f/A : A \rightarrow f(A) \) is weakly pairwise continuous.

PROOF: Let \(x \in A \) and \(U \) be any \(T_{1f(A)} \)-open set in \(f(A) \) containing \(g(x) \). Then there exists a \(T_1 \)-open set \(G \) in \(Y \) such that \(U = G \cap f(A) \). Since \(f \) is weakly pairwise continuous there exists a \(P_1 \)-open set \(H \) in \(X \) such that \(x \in H \subseteq f^{-1}(T_1 \text{-cl } G) \). Thus, \(x \in H \cap A \subseteq f^{-1}(T_1 \text{-cl } G) \cap A = g^{-1}(T_1 f(A) \cap U) \). Since \(H \cap A \) is \(P_1 \)-open in \(A \), it follows that \(g \) is weakly pairwise continuous. \(\Box \)
REMARK (3.2) : The composition of two weakly pairwise continuous mappings may fail to be weakly pairwise continuous as is asserted by the following example:

EXAMPLE (3.2) : Let $X = \{a, b, c\} = Z$, and $Y = \{a, b, c, d\}$. Let $P_1 = \{\emptyset, X\}$, $P_2 = \{\emptyset, \{a, c\} \cup X\}$,

$T_1 = \{\emptyset, \{a, c\} \cup Y\}$, $T_2 = \{\emptyset, \{c, d\} \cup Y\}$,

and $Q_1 = \{\emptyset, \{a\} \cup Z\}$, $Q_2 = \{\emptyset, \{c\} \cup Z\}$.

Then, the mapping $f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2)$ defined by $f(a) = d$, $f(b) = b$, $f(c) = a$ and the mapping $g : (Y, T_1, T_2) \rightarrow (Z, Q_1, Q_2)$ defined by $g(a) = a$, $g(b) = g(c) = b$, $g(d) = c$ are weakly pairwise continuous but their composite mapping $g \circ f$ is not weakly pairwise continuous. However, we have the following theorem:

THEOREM (3.3) : If $f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2)$ is weakly pairwise continuous and $g : (Y, T_1, T_2) \rightarrow (Z, Q_1, Q_2)$ is pairwise continuous then $g \circ f$ is weakly pairwise continuous.

PROOF : Let $x \in X$ and V be any Q_1-open set in Z such that $g(f(x)) \in V$. Then, $f(x) \in g^{-1}(V)$ and g being pairwise
continuous $g^{-1}(V)$ is T_1-open. Now, if being weakly pairwise continuous there exists a P_1-open set U in X such that $x \in U$ and $f(U) \subseteq T_j$-cl $g^{-1}(V)$. But, T_j-cl $g^{-1}(V) \subseteq g^{-1}(Q_j$-$cl$ $V)$ for g is pairwise continuous. Therefore, $x \in U \subseteq f^{-1}(g^{-1}(Q_j$-$cl$ $V))$, that is, $(g \circ f)(U) \subseteq Q_j$-$cl$ V. Hence, $g \circ f$ is weakly pairwise continuous. //

THEOREM (3.9): If $f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2)$ is pairwise continuous and $g^1 : (Y, T_1, T_2) \rightarrow (Z, Q_1, Q_2)$ is weakly pairwise continuous then $g \circ f$ is weakly pairwise continuous.

PROOF: Let $x \in X$ and let V be a Q_1-open set such that $g(f(x)) \in V$. Since g is weakly pairwise continuous there exists a T_1-open set G such that $f(x) \in G$ and $g(G) \subseteq Q_j$-cl V. This implies that $G \subseteq g^{-1}(Q_j$-cl $V)$. Now by pairwise continuity of f, there exists a P_1-open set U containing x such that $f(U) \subseteq G$. That is, $U \subseteq f^{-1}(G)$. Thus, $U \subseteq f^{-1}(G) \subseteq f^{-1}g^{-1}(Q_j$-$cl$ $V) = (g \circ f)^{-1}(Q_j$-$cl$ $V)$. This shows that $(g \circ f)(U) \subseteq Q_j$-$cl$ V. Hence, $g \circ f$ is weakly pairwise continuous. //
Let us introduce the terms utilised later:

DEFINITION (3.2): A subset A of a space (X, P_1, P_2) is termed a $P_1(\alpha)$-set if $A \subseteq P_1$-int P_j-cl P_1-int A, $i, j = 1, 2$, such that $i \neq j$.

DEFINITION (3.3): A subset A of a space (X, P_1, P_2) is termed a $P_1(\cos)$-set if $X - A$ is a $P_1(\alpha)$-set, $i = 1, 2$. Equivalently, A is a $P_1(\cos)$-set iff P_1-cl P_j-int P_1-cl A $\subseteq A$, $i, j = 1, 2$, such that $i \neq j$.

The following theorem explores several characterizations of the concept of weak pairwise continuity:

THEOREM (3.10): If $f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2)$, then the following statements are equivalent:

(a) f is weakly pairwise continuous.

(b) $f^{-1}(V) \subseteq P_1$-int $f^{-1}(T_j$-cl $V)$, for each T_1-open set V.

(c) P_j-cl $f^{-1}(V) \subseteq f^{-1}(T_j$-cl $V)$, for each T_1-open set V.

(d) $f^{-1}(T_j$-int $B) \subseteq P_j$-int $f^{-1}(B)$, for each T_1-closed set B.
(e) For each point \(p \in X \) and each net
\[
\{ p_n \colon n \in D, 2 \} \text{ converging to } p,
\]
the image net \(f(p_n) \) is eventually in every \(T_j \)-closed \(T_1 \)-neighbourhood of \(f(p) \),
\(i, j = 1, 2, i \neq j \).

(f) \(f^{-1}(A) \subseteq P_1 \text{-int } f^{-1}(T_j \text{-cl } A) \) for every
\(T_1(\alpha) \)-set \(A \).

(g) \(P_j \text{-cl } f^{-1}(A) \subseteq f^{-1}(T_j \text{-cl } A) \) for every
\(T_1(\alpha) \)-set \(A \).

(h) \(f^{-1}(T_j \text{-int } M) \subseteq P_j \text{-int } f^{-1}(M) \) for every
\(T_1(\text{co}x) \)-set \(M \).

where \(i, j = 1, 2, \) such that \(i \neq j \).

Proof:

(e) \(\Rightarrow \) (b): Let \(x \in f^{-1}(V) \). Then \(f(x) \in V \).

Since \(V \) is \(T_1 \)-open, by (a) there exists a \(P_1 \)-open set \(U \)
containing \(x \) such that \(f(U) \subseteq T_j \text{-cl } V \). It follows that
\(x \in U \subseteq P_1 \text{-int } f^{-1}(T_j \text{-cl } V) \). Thus, (b) holds.

(b) \(\Rightarrow \) (e): Let \(x \in X \) and \(V \) be a \(T_1 \)-open set containing
\(f(x) \). Then, \(x \in f^{-1}(V) \subseteq P_1 \text{-int } f^{-1}(T_j \text{-cl } V) = 0 \), say. Then,
0 is a P_j-open set containing x such that $f(0) = f(P_j$-int $f^{-1}(T_j-cl V)) \subseteq f^{-1}(T_j-cl V) \subseteq T_j-cl V$. Thus, (a) holds.

(b) \implies (c) : Let $x \in P_j-cl f^{-1}(V)$ and V be T_1-open. Let M be a T_1-open set containing $f(x)$. Then, $x \in f^{-1}(M) \subseteq P_j$-int $f^{-1}(T_j-cl M) \subseteq f^{-1}(T_j-cl M)$. Therefore, $f^{-1}(T_j-cl M)$ is a P_j-neighbourhood of x and it follows that $f^{-1}(T_j-cl M) \cap f^{-1}(V) \neq \emptyset$. That is, $(T_j-cl M) \cap V \neq \emptyset$. Since V is T_1-open, $(T_j-cl M) \cap V \subseteq T_j-cl (M \cap V)$, so that $M \cap V \neq \emptyset$. Therefore, $f(x) \in T_j-cl V$, and so $x \in f^{-1}(T_j-cl V)$. Thus, (c) holds.

(c) \implies (d) : If B is T_1-closed then $Y - B$ is T_1-open. So that by (c) we have, $P_j-cl f^{-1}(Y - B) \subseteq f^{-1}(T_j-cl (Y - B))$. By taking complements we get, $f^{-1}(T_j-int B) \subseteq P_j$-int $f^{-1}(B)$.

(d) \implies (b) : Let V be T_1-open. Then, $T_j-cl V$ is T_j-closed. Now by (d), $f^{-1}(T_j-int T_j-cl V) \subseteq P_j$-int $f^{-1}(T_j-cl V)$. Since V is T_1-open it follows that $V \subseteq T_j-int T_j-cl V$. Hence, $f^{-1}(V) \subseteq f^{-1}(T_j-int T_j-cl V) \subseteq P_j$-int $f^{-1}(T_j-cl V)$. Thus, (b) holds.
(d) \implies (e): Let \(p \in X \) and let \(\{ p_n, n \in D, \omega \} \) be a net converging to \(p \). Let \(B \) be any \(T_j \)-closed \(T_j \)-neighbourhood of \(f(p) \). There exists a \(T_j \)-open set \(G \) such that \(f(p) \in G \subseteq T_j \)-cl \(G \subseteq B \). By the hypothesis, \(f^{-1}(T_j \text{-int } T_j \text{-cl } G) \subseteq P_j \text{-int } f^{-1}(T_j \text{-cl } G) \). Since \(G \) is \(T_j \)-open therefore \(G \subseteq T_j \text{-int } T_j \text{-cl } G \). Thus, \(p \in f^{-1}(G) \subseteq P_j \text{-int } f^{-1}(T_j \text{-cl } G) \subseteq f^{-1}(T_j \text{-cl } G) \). That is, \(f(p) \in T_j \text{-cl } G \subseteq B \). This shows that the net \(\{ f(p_n), n \in D, \omega \} \) is eventually in \(B \).

(e) \implies (a): Let \(p \in X \) and let \(G \) be any \(T_j \)-neighbourhood of \(f(p) \). If for no \(P_j \)-neighbourhood \(N \) of \(p \), \(f(N) \subseteq T_j \text{-cl } G \) then \(N \cap (X \setminus f^{-1}(T_j \text{-cl } G)) \neq \emptyset \), for every \(P_j \)-neighbourhood \(N \) of \(p \). For each \(P_j \)-neighbourhood \(N \) of \(p \), let \(p_N \in N \cap (X \setminus f^{-1}(T_j \text{-cl } G)) \). Then, \(\{ p_N, N \in \mathcal{U}_j(p), \subseteq \} \), where \(\mathcal{U}_j(p) \) is the \(P_j \)-neighbourhood system of the point \(p \), is a net in \(X \) which converges to \(p \). But, the image net \(\{ f(p_N), N \in \mathcal{U}_j(p), \subseteq \} \) is not eventually in the \(P_j \)-closed \(P_j \)-neighbourhood \(T_j \text{-cl } G \) of \(f(p) \). This is a contradiction. Hence, there exists a \(P_j \)-open neighbourhood \(N \) of \(p \) such that \(f(N) \subseteq T_j \text{-cl } G \). Hence, \(f \) is weakly pairwise continuous.
(a) \implies (f) : Let A be a $T_1(a)$-set. Let $x \in f^{-1}(A)$. Then, $f(x) \in A \subseteq T_1\text{-}int T_j\text{-}cl T_1\text{-}int A \subseteq T_1\text{-}int T_j\text{-}cl A$. Therefore, there exists a T_1-open set G such that $f(x) \in A \subseteq G \subseteq T_j\text{-}cl G \subseteq T_j\text{-}cl A$. But f is weakly pairwise continuous at x, therefore there exists a P_1-open set V containing x such that $f(V) \subseteq T_j\text{-}cl G$. This shows that $x \in V \subseteq f^{-1}(f(V)) \subseteq f^{-1}(T_j\text{-}cl G) \subseteq f^{-1}(T_j\text{-}cl A)$. That is, $f^{-1}(T_j\text{-}cl A)$ is a P_1-neighbourhood of x. Hence, $x \in P_1\text{-}int f^{-1}(T_j\text{-}cl A)$. Consequently, $f^{-1}(A) \subseteq P_1\text{-}int f^{-1}(T_j\text{-}cl A)$.

(f) \implies (g) : Let $x \in P_j\text{-}cl f^{-1}(A)$, where A is a $T_1(a)$-set. Let G be a T_j-open neighbourhood of $f(x)$. Then G is a $T_1(a)$-set. So $x \in f^{-1}(G) \subseteq P_j\text{-}int f^{-1}(T_j\text{-}cl G) \subseteq f^{-1}(T_j\text{-}cl G)$. Thus, $f^{-1}(T_j\text{-}cl G)$ is a P_j-neighbourhood of x. Then there exists a P_j-open set V in X such that $x \in V \subseteq f^{-1}(T_j\text{-}cl G)$. Since, $x \in P_j\text{-}cl f^{-1}(A)$ therefore $V \cap f^{-1}(A) \neq \emptyset$. This implies that, $f(V) \cap A \neq \emptyset$. And so, $T_j\text{-}cl G \cap A \neq \emptyset$. Since, $A \subseteq T_1\text{-}int T_j\text{-}cl T_1\text{-}int A$, therefore, $T_j\text{-}cl G \cap T_1\text{-}int T_j\text{-}cl T_1\text{-}int A \neq \emptyset$. Therefore, $G \cap T_1\text{-}int T_j\text{-}cl T_1\text{-}int A \neq \emptyset$. And so, $G \cap T_j\text{-}cl T_1\text{-}int A \neq \emptyset$. Since G is T_j-open, this yields $G \cap T_1\text{-}int A \neq \emptyset$. That is, $G \cap A \neq \emptyset$.

Hence \(f(x) \in T_j \text{-} cl \ A \). And so, \(x \in f^{-1}(T_j \text{-} cl \ A) \).

\[(g) \implies (h) : \] Let \(M \) be a \(T_4(\text{coa}) \)-set, then \(Y - M \) is a \(T_4(\alpha) \)-set. Therefore by hypothesis we have, \(P_j \text{-} cl f^{-1}(Y - M) \subseteq f^{-1}(T_j \text{-} cl (Y - M)) \). Taking complements we get, \(f^{-1}(T_j \text{-} int M) \subseteq P_j \text{-} int f^{-1}(M) \).

\[(h) \implies (b) : \] Let \(V \) be \(T_4 \) -open. Then \(T_j \text{-} cl \ V \) is \(T_j \) -closed.

Now, \(T_j \text{-} cl \ V \) is a \(T_j(\text{coa}) \)-set for every \(T_j \) -closed set is a \(T_j(\text{coa}) \)-set. Therefore by hypothesis, \(f^{-1}(T_j \text{-} int T_j \text{-} cl V) \subseteq P_j \text{-} int f^{-1}(T_j \text{-} cl V) \). Since \(V \) is \(T_4 \)-open, therefore \(f^{-1}(V) \subseteq f^{-1}(T_j \text{-} int T_j \text{-} cl V) \subseteq P_j \text{-} int f^{-1}(T_j \text{-} cl V) \). //

The notion of pairwise Urysohn is due to Singal and Arya [94]. It is introduced as follows:

DEFINITION (3.3): A space \((X, P_1, P_2) \) is said to be pairwise Urysohn if for every pair of points \(x, y \in X \), \(x \neq y \), there exists a \(P_1 \)-open set \(U \) and a \(P_2 \)-open set \(V \) containing \(y \) such that \(P_2 \text{-} cl U \cap P_1 \text{-} cl V = \emptyset \).

THEOREM (3.11): If \(f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2) \) is a weakly pairwise continuous injection and \((Y, T_1, T_2) \) is pairwise Urysohn, then \((X, P_1, P_2) \) is pairwise Hausdorff.
PROOF : Let $x, y \in X$ and $x \neq y$. Since f is injective therefore, $f(x) \neq f(y)$. Since Y is pairwise Urysohn there exists a T_1-open set U containing $f(x)$ and a T_2-open set V containing $f(y)$ such that T_2-cl $U \cap T_1$-cl $V = \emptyset$. So that, $f^{-1}(T_2$-cl $U) \cap f^{-1}(T_1$-cl $V) = \emptyset$. This implies that P_1-int $f^{-1}(T_2$-cl $U) \cap P_2$-int $f^{-1}(T_1$-cl $V) = \emptyset$. Since f is weakly pairwise continuous, by Theorem (3.10 b), $f(x) \in U$ implies that $x \in f^{-1}(U) \subseteq P_1$-int $f^{-1}(T_2$-cl $U)$. Similarly, $y \in f^{-1}(V) \subseteq P_2$-int $f^{-1}(T_1$-cl $V)$. Since P_1-int $f^{-1}(T_2$-cl $U)$ is P_1-open and P_2-int $f^{-1}(T_1$-cl $V)$ is P_2-open, it follows that, (X, P_1, P_2) is pairwise Hausdorff. \\

THEOREM (3.12): If $f : (X, P_1, P_2) \to (Y, T_1, T_2)$ is a weakly pairwise continuous surjection and (X, P_1, P_2) is pairwise connected then (Y, T_1, T_2) is pairwise connected.

PROOF : Suppose that Y is not pairwise connected. Then there exists a nonempty proper subset A of Y which is both T_1-open and T_2-closed. Since A is T_1-open, by Theorem (3.10c), P_2-cl $f^{-1}(A) \subseteq f^{-1}(T_2$-cl $A) = f^{-1}(A)$ since A is T_2-closed. Therefore, $f^{-1}(A)$ is P_2-closed. Again since A is T_2-closed,
by Theorem (3.10 d), $f^{-1}(T_1 \text{-int } A) \subseteq P_1 \text{-int } f^{-1}(A)$. This reduces to $f^{-1}(A) \subseteq P_1 \text{-int } f^{-1}(A)$, since A is P_1-open.

Therefore, $f^{-1}(A)$ is P_1-open. Since f is surjective, $f^{-1}(A)$ is nonempty. Thus, $f^{-1}(A)$ is a nonempty proper subset of X which is both P_1-open and P_2-closed. This leads to a contradiction that (X, P_1, P_2) is not pairwise connected.

Consequently, (Y, T_1, T_2) is pairwise connected. //

Remark (3.3): Theorem (3.12) may fail if f is not surjective, as the following example asserts:

Example (3.3): Let $X = \{a, b, c\}$ and $Y = \{x, y, z\}$. Let

$$P_1 = \emptyset, \{a\}, X \} \quad P_2 = \emptyset, \{b\}, X \} ,$$

and

$$T_1 = \emptyset, \{x, z\}, Y \} \quad T_2 = \emptyset, \{y, z\}, Y \} .$$

Then the mapping $f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2)$ defined by $f(a) = x$, $f(b) = f(c) = y$ is weakly pairwise continuous, but it is not surjective. Note that though the space (X, P_1, P_2) is pairwise connected but $f(X) = \{x, y\}$ is not a pairwise connected subspace of the space (Y, T_1, T_2).

* * * * *