CHAPTER VIII

SOME NEW MAPPINGS II

This Chapter, though continues the study of the type of the pairwise mappings discussed in Chapter VII, is a little diverted in its conception. In the previous chapter, the new notions introduced take into account P_i (resp. T_i)-open sets or their stronger forms viz. (i,i)-regular open sets, $i,j=1,2$ and $i \neq j$. The concepts that we propose to introduce here, take into consideration P_i (resp. T_i)-open sets and their weaker forms viz. (i,j)-semiopen sets and P_i (resp. T_i)-semiopen sets.

In a bitopological space the concept of (i,j)-semiopen is due to Maheshwari and Prasad [54]. A subset A of a space (X, P_1, P_2) is termed (i,j)-semiopen if there exists a P_i-open set O such that $O \subseteq A \subseteq P_j$-cl O, $i,j=1,2$ such that $i \neq j$. Every P_i-open set is (i,j)-semiopen but the converse may be false. The complement of an (i,j)-semiopen set is called (i,j)-semiclosed. The smallest (i,j)-semiclosed

* J. Indian Acad. Math. (To appear)*
set which contains a set A is denoted by (i,j)-scl A. In general, $A \subseteq (i,j)$-scl $A \subseteq P_1$-cl A [54]. Moreover, every P_1-open set is P_1-semiopen but the converse may fail. It has been observed [54] that the notions of (i,j)-semiopen and P_1-semiopen are independent. The aim of this chapter is to make use of (i,j)-semiopen sets and P_1-semiopen sets in the study of pairwise mappings.

The three new concepts are conceived as follows:

DEFINITION (8.1): A mapping $f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2)$ is termed ϕ-pairwise semiopen if the image of each P_1-open set is (i,j)-semiopen in Y, $i, j = 1, 2$ such that $i \neq j$.

DEFINITION (8.2): A mapping $f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2)$ is termed ϕ^e-pairwise semiopen if the image of each (i,j)-semiopen set in X is (i,j)-semiopen in Y, $i, j = 1, 2$ such that $i \neq j$.

DEFINITION (8.3): A mapping $f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2)$ is termed ϕ^e-pairwise semiopen if the image of each P_1-semiopen set is (i,j)-semiopen in Y, $i, j = 1, 2$ such that $i \neq j$.

THEOREM (8.1) : Every pairwise open mapping \(f : (X_1, P_1, P_2) \rightarrow (Y_1, T_1, T_2) \) is \(\phi \)-pairwise semiopen.

PROOF : It follows because every \(T_1 \)-open set is \((i,j)\)-semiopen in \(Y \). //

THEOREM (8.2) : Every \(\phi \)-pairwise semiopen mapping \(f : (X_1, P_1, P_2) \rightarrow (Y_1, T_1, T_2) \) is \(\phi \)-pairwise semiopen.

PROOF : It follows because every \(P_1 \)-open set is \((i,j)\)-semiopen in \(X \). //

THEOREM (8.3) : Every \(\phi \)-pairwise semiopen mapping \(f : (X_1, P_1, P_2) \rightarrow (Y_1, T_1, T_2) \) is \(\phi \)-pairwise semiopen.

PROOF : It follows because every \(P_1 \)-open set is \(P_1 \)-semiopen. //

Let us now consider few examples. Let \(X = \{a, b, c\} = Y = Z \), and \(f : (X_1, P_1, P_2) \rightarrow (Y_1, T_1, T_2) \) and \(g : (Y_1, T_1, T_2) \rightarrow (Z_1, Q_1, Q_2) \) be the identity mappings throughout the examples that follow in this chapter.

EXAMPLE (8.1) : Let \(P_1 = \{\emptyset, \{a\}, X\} \), \(P_2 = \{\emptyset, \{b, c\}, X\} \), and \(T_1 = \{\emptyset, \{a\}, Y\} \), \(T_2 = \{\emptyset, \{b\}, Y\} \).
Then, the mapping f is Φ^*-pairwise semiopen (and hence, Φ-pairwise semiopen) but it is neither W^*-almost pairwise open nor weakly pairwise open. Obviously, it is neither W-almost pairwise open, nor almost pairwise open nor pairwise open. Note also that, it is not Φ^*_e-pairwise semiopen.

Example (8.2): Let $P_1 = \{\emptyset, \{a\}, X\}$, $P_2 = \{\emptyset, X\}$ and $T_1 = \{\emptyset, \{a\}, Y\}$, $T_2 = \{\emptyset, \{b\}, Y\}$.

Then, the mapping f is pairwise open but it is not Φ^*-pairwise semiopen. Obviously, it is almost pairwise open, weakly pairwise open, pairwise semiopen, W-almost pairwise open, W^*-almost pairwise open, R-almost pairwise open and weakly R-almost pairwise open. Note also that, it is not Φ^*_e-pairwise semiopen.

Example (8.3): Let P_1, P_2 be as in Example (8.2) and $T_1 = \{\emptyset, \{a, b\}, Y\}$, $T_2 = \{\emptyset, \{c\}, Y\}$.

Then, the mapping f is almost pairwise open, W-almost pairwise open and R-almost pairwise open but it is not Φ-pairwise semiopen. Obviously, it is weakly pairwise open, W^*-almost pairwise open and weakly R-almost pairwise open.
Example (8.4): Let T_1, T_2 be as in Example (8.1). Let

$$p_1 = \{\emptyset, \{a, b\}, X\}, \quad p_2 = \{\emptyset, \{b, c\}, X\}.$$

Then, the mapping f is pairwise semiopen but it is not ϕ-pairwise semiopen. Obviously, it is not ϕ^*-pairwise semiopen.

Example (8.5): Let

$$p_1 = \{\emptyset, \{a, c\}, X\}, \quad p_2 = \{\emptyset, \{b, c\}, X\}$$

and

$$T_1 = \{\emptyset, \{a\}, \{b, c\}, Y\}, \quad T_2 = \{\emptyset, \{b\}, Y\}.$$

Then, the mapping f is ϕ^*-pairwise semiopen (and hence, ϕ-pairwise semiopen) but it is not pairwise semiopen. Note that, it is ϕ^*_g-pairwise semiopen.

Example (8.6): Let

$$p_1 = \{\emptyset, \{b, c\}, X\}, \quad p_2 = \{\emptyset, \{a\}, X\}$$

and

$$T_1 = T_2 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, Y\}.$$

Then, the mapping f is ϕ^*-pairwise semiopen (and hence, ϕ-pairwise semiopen) but it is not weakly R-almost pairwise open (and hence, it is not R-almost pairwise open). It is ϕ^*_g-pairwise semiopen also.

Example (8.7): Let

$$p_1 = \{\emptyset, \{a\}, X\}, \quad p_2 = \{\emptyset, \{b, c\}, X\}$$
and
\[T_1 = \{ \emptyset, \{ a \}, \{ a, b \}, Y \}, \quad T_2 = \{ \emptyset, \{ b \}, Y \} \]

Then, the mapping \(f \) is \(\Phi_0 \)-pairwise semiopen but it is neither \(W^* \)-almost pairwise open nor weakly pairwise open.

Example (8.8): Let
\[p_1 = \{ \emptyset, \{ a \}, \{ b, c \}, X \}, \quad T_1 = \{ \emptyset, \{ a \}, \{ b, c \}, Y \} \]
and
\[p_2 = \{ \emptyset, X \}, \quad T_2 = \{ \emptyset, \{ c \}, Y \} \]

Then, the mapping \(f \) is \(\Phi_0 \)-pairwise semiopen but it is not \(\Phi^* \)-pairwise semiopen.

Thus, we arrive at the following diagram of implications:
where the new abbreviations stand as follows:

\(\phi\text{-p.s.o.} \) : \(\phi\)-pairwise semiopen.

\(\phi^*\text{-p.s.o.} \) : \(\phi^*\)-pairwise semiopen.

\(\phi_6\text{-p.s.o.} \) : \(\phi_6\)-pairwise semiopen.

Remark (8.1): The composition of two \(\phi\)-pairwise semiopen mappings need not be \(\phi\)-pairwise semiopen. For,

Example (8.9): Let,

\[
P_1 = \{ \emptyset, \{a,b\} \} \times X, \quad P_2 = \{ \emptyset, \{c\} \} \times X,
\]

\[
T_1 = \{ \emptyset, \{a\} \} \times Y, \quad T_2 = \{ \emptyset, \{c\} \} \times Y,
\]

and

\[
Q_1 = \{ \emptyset, \{a\} \} \times Z, \quad Q_2 = \{ \emptyset, \{b\} \times \{c\} \times \{b,c\} \times Z \}.
\]

Then, the mapping \(f \) is \(\phi\)-pairwise semiopen and the mapping \(g \) is pairwise open (and hence, \(\phi\)-pairwise semiopen) but \(g \circ f \) is not \(\phi\)-pairwise semiopen.

Remark (8.2): The composition of two \(\phi_6\)-pairwise semiopen mappings may not be \(\phi_6\)-pairwise semiopen. For,

Example (8.10): Let,

\[
P_1 = \{ \emptyset, \{a,b\} \} \times X, \quad P_2 = \{ \emptyset \} \times X,
\]

\[
T_1 = \{ \emptyset, \{a\} \} \times \{b,c\} \times Y, \quad T_2 = \{ \emptyset, \{c\} \} \times \{a,c\} \times Y
\]
and
\[q_1 = \{\emptyset, \{a\}, \{b,c\}, Z\}, \]
\[q_2 = \{\emptyset, \{c\}, \{b,c\}, \{a,c\}, Z\}. \]

Then, the mappings \(f \) and \(g \) are \(\phi^e \)-pairwise semiopen but \(g \circ f \) fails to be so.

However, we have the following results:

Theorem (8.4): The composition of a pairwise open mapping and a \(\phi \)-pairwise semiopen mapping is \(\phi \)-pairwise semiopen.

Theorem (8.5): The composition of a \(\phi \)-pairwise semiopen mapping and a \(\phi^e \)-pairwise semiopen mapping is \(\phi \)-pairwise semiopen.

Theorem (8.6): The composition of a \(\phi^e \)-pairwise semiopen mapping and a \(\phi^e \)-pairwise semiopen mapping is \(\phi^e \)-pairwise semiopen.

Theorem (8.7): The composition of two \(\phi^e \)-pairwise semiopen mappings is \(\phi^e \)-pairwise semiopen.

The concept of pairwise presemiopen mappings is due to Papp [78]. A mapping \(f : (X, P_1, P_2) \to (Y, T_1, T_2) \) is presemiopen if the image of each \(P_1 \)-semiopen set is \(T_1 \)-semiopen. We see that,
THEOREM (8.8) : The composition of a pairwise prosemiopen mapping and a \(\emptyset \)-pairwise semiopen mapping is \(\emptyset \)-pairwise semiopen.

THEOREM (8.9) : The composition of a pairwise semiopen mapping and a \(\emptyset \)-pairwise semiopen mapping is \(\emptyset \)-pairwise semiopen.

The proofs of the above theorems are straightforward and hence are omitted.

REMARK (8.3) : The mapping \(f \) considered in Example (8.9) is \(\emptyset \)-pairwise semiopen and if we let \(A = \{ a, c \} \) then \(f/A \) is not \(\emptyset \)-pairwise semiopen.

THEOREM (8.10) : If \(f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2) \) is \(\emptyset \)-pairwise semiopen and \(A \) is a biopen set in \(X \), then \(f/A \) is \(\emptyset \)-pairwise semiopen.

PROOF : If \(U \) is \(P_1A \)-open in \(A \) then \(U \) is \(P_1 \)-open for \(A \) is \(P_1 \)-open. Since \((f/A)(U) = f(U) \), which is by hypothesis \((1, j) \)-semiopen in \(Y \). //

REMARK (8.4) : The mapping \(f \) considered in Example (8.1) is \(\emptyset \)-pairwise semiopen and if we let \(A = \{ a, c \} \), then \(f/A \)
is not \emptyset^*-pairwise semiopen. However, we have,

Theorem (8.11): If $f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2)$ is \emptyset^*-pairwise semiopen and A is biopen in X, then f/A is \emptyset^*-pairwise semiopen.

It's proof requires the following result:

Lemma (8.1): If A is a P_1-open subset of (X, P_1, P_2) and S is (i,j)-semiopen in A then S is (i,j)-semiopen in X.

Proof of Theorem (8.11): Let U be any (i,j)-semiopen set in A then by Lemma (8.1), it is (i,j)-semiopen in X for A is P_1-open. And so, $(f/A)(U) = f(U)$ which is (i,j)-semiopen in Y since f is \emptyset^*-pairwise semiopen. Hence, f/A is \emptyset^*-pairwise semiopen. //

Remark (8.3): The mapping f considered in Example (8.5) is \emptyset_6-pairwise semiopen and if we let $A = \{a, c\}$ then f/A fails to be \emptyset_6-pairwise semiopen. However, we get,

Theorem (8.12): If $f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2)$ is \emptyset_6-pairwise semiopen and A is bisemiopen in X then f/A is \emptyset_6-pairwise semiopen.
PROOF: It results in view of the fact that if \(U \) is any \(p_{1A} \)-semiopen set in \(A \) then it is \(p_{1} \)-semiopen in \(X \) for \(A \) is \(p_{1} \)-semiopen \([51] \).

The following concept is due to Popa \([78]\):

DEFINITION (8.3): A mapping \(f : (X, p_{1}, p_{2}) \rightarrow (Y, T_{1}, T_{2}) \) is said to be pairwise semicontinuous (Popa's sense) if the inverse image of each \(T_{1} \)-open set is \(p_{1} \)-semiopen, \(i = 1, 2 \).

We introduce the following concept:

DEFINITION (8.4): A space \((X, p_{1}, p_{2}) \) is termed extremely disconnected if for each \(p_{1} \)-open set \(U \), \(p_{j} = 1 \) \(U \) is \(p_{j} \)-open.

The following theorem investigates the situation under which the concept of \(\emptyset \)-pairwise semiopen implies \(\emptyset^{*} \)-pairwise semiopen.

THEOREM (8.13): Let \(f : (X, p_{1}, p_{2}) \rightarrow (Y, T_{1}, T_{2}) \) be pairwise semicontinuous (Popa's sense) and \(\emptyset \)-pairwise semiopen. If the space \(X \) is extremely disconnected, then \(f \) is \(\emptyset^{*} \)-pairwise semiopen.

We shall need the following lemma:

Lemma (8.2)\([54]\). If \(A \) is \((i, j)\)-semiopen in a space \((X, p_{1}, p_{2}) \) and \(A \subseteq B \subseteq p_{j} = 1 A \), then \(B \) is \((i, j)\)-semiopen in \(X \).
PROOF OF THEOREM (6.13): Let \(U \) be \((i,j)\)-semiopen in \(X \).

Then, there exists a \(P_i \)-open set \(G \) in \(X \) such that \(G \subseteq U \subseteq P_j \text{cl} \ G \). Now, by Lemma (9.3) \(P_j \text{-scl} \ G = P_j \text{cl} \ G \), for the space \(X \) is extremely disconnected and \(G \) being \(P_i \)-open is \((i,j)\)-semiopen in \(X \). Since \(f \) is pairwise semicontinuous (Papa's), \(f^{-1}(T_j \text{cl} f(G)) \) is \(P_j \)-semiclosed and contains \(G \). Therefore, \(f(P_j \text{-scl} G) \subseteq T_j \text{cl} f(G) \). Thus, \(f(G) \subseteq f(U) \subseteq f(P_j \text{cl} G) = f(P_j \text{-scl} G) \subseteq T_j \text{cl} f(G) \). Since \(f \) is \(\emptyset \)-pairwise semiopen, \(f(G) \) is \((i,j)\)-semiopen in \(Y \). Consequently, by Lemma (8.2), \(f(U) \) is \((i,j)\)-semiopen in \(Y \), showing that \(f \) is \(\emptyset \)-pairwise semiopen. ///

REMARK (8.6): Theorem (6.13) may fail if the domain space is not extremely disconnected. For,

EXAMPLE (6.11): Let

\[
P_1 = \{ \emptyset, \{a\}, X \}, \quad P_2 = \{ \emptyset, \{b\}, X \},
\]

and

\[
T_1 = \{ \emptyset, \{a\}, \{a, c\}, Y \}, \quad T_2 = \{ \emptyset, \{b\}, Y \}.
\]

Then, the mapping \(f \) is pairwise semicontinuous (Papa's) and \(\emptyset \)-pairwise semiopen but it is not \(\emptyset \)-pairwise semiopen. Note that the domain space \((X, P_1, P_2)\) is not extremely disconnected.
Maheshwari and Prasad [54] have also introduced the term pairwise semicontinuous as follows:

Definition (8.1): A mapping $f : (X_1, P_1, P_2) \rightarrow (Y_1, T_1, T_2)$ is termed pairwise semicontinuous if the inverse image of each T_{i}-open set is (I_j, J)-semiopen in X, $i, j = 1, 2$ such that $i \neq j$.

Remark (8.7): The concepts of pairwise semicontinuity and pairwise semicontinuity (Papa's sense) are independent. For,

Example (8.12): Let,

$$P_1 = \{\emptyset, \{a\}, \{a, c\}, X\}, \quad P_2 = \{\emptyset, \{b\}, X\}$$

and

$$T_1 = \{\emptyset, \{a, b\}, Y\}, \quad T_2 = \{\emptyset, \{b, c\}, Y\}.$$

Then, the mapping f is pairwise semicontinuous (Papa's sense) but not pairwise semicontinuous.

Example (8.13): Let,

$$P_1 = \{\emptyset, \{a\}, \{b, c\}, X\}, \quad P_2 = \{\emptyset, \{b\}, X\}$$

and

$$T_1 = \{\emptyset, \{a, c\}, Y\}, \quad T_2 = \{\emptyset, Y\}.$$

Then, the mapping f is pairwise semicontinuous but not pairwise semicontinuous (Papa's sense).
We have:

Theorem (8.14): Let \(f : (X, P_1, P_2) \to (Y, T_1, T_2) \) be pairwise semicontinuous and \(\emptyset \)-pairwise semiopen. If the space \(X \) is \(p \)-extremely disconnected then \(f \) is \(\emptyset^* \)-pairwise semiopen.

We shall need the following Lemma:

Lemma (8.3): A mapping \(f : (X, P_1, P_2) \to (Y, T_1, T_2) \) is pairwise semicontinuous iff for each subset \(A \) of \(X \),
\[
f[(i, j) - \text{scl} A] \subseteq T_j - \text{cl} f(A).
\]

Proof of Theorem (8.14): Let \(U \) be \((i, j)\)-semiopen in \(X \). There exists a \(P_j \)-open set \(G \) such that \(G \subseteq U \subseteq P_j - \text{cl} G \). Since \(G \) is \(P_j \)-open it is \((i, j)\)-semiopen in \(X \). Now the space \(X \) being \(p \)-extremely disconnected we have, by Lemma (9.2) that \((j, i)\)-\text{scl} \(G = P_j - \text{cl} G \). Since \(f \) is pairwise semicontinuous by Lemma (8.3), we obtain:
\[
f[(j, i) - \text{scl} G] \subseteq T_j - \text{cl} f(G).
\]
Therefore,
\[
f(G) \subseteq f(U) \subseteq f(P_j - \text{cl} G) = f[(j, i) - \text{scl} G] \subseteq T_j - \text{cl} f(G).
\]
Now \(f \) being \(\emptyset \)-pairwise semiopen, \(f(G) \) is \((i, j)\)-semiopen in \(Y \). And so, \(f(U) \) is \((i, j)\)-semiopen in \(Y \) by Lemma (8.2). Hence, \(f \) is \(\emptyset^* \)-pairwise semiopen. //
Remark (8.8): For the validity of Theorem (8.14), it is essential that the domain space X must be p-extremely disconnected. This also is asserted by Example (8.11), where f is pairwise semicontinuous and \emptyset-pairwise semiopen but it is not \emptyset^*-pairwise semiopen. Note that (X, P_1, P_2) is not p-extremely disconnected.

Theorem (8.15): If a mapping $f : (X, P_1, P_2) \rightarrow (Y, T_1, T_2)$ is almost H^*-pairwise continuous and \emptyset-pairwise semiopen then it is \emptyset^*-pairwise semiopen.

Proof: Let U be (i,j)-semiopen in X. There exists a P_1-open set G such that $G \subseteq U \subseteq P_1$-$\text{cl} \ G$. If $x \in P_1$-$\text{cl} \ G$ and M be any T_j-open neighbourhood of $f(x)$ then P_1-$\text{cl} \ f^{-1}(M)$ is a P_1-neighbourhood of x since f is almost H^*-pairwise continuous. Therefore, $G \cap P_1$-$\text{cl} \ f^{-1}(M) \neq \emptyset$. Since G is P_1-open it follows that, P_1-$\text{cl} \ (G \cap f^{-1}(M)) \neq \emptyset$, and so $G \cap f^{-1}(M) \neq \emptyset$, showing that, $f(G) \cap M \neq \emptyset$. Thus, $f(x) \in T_j$-$\text{cl} \ f(G)$. Consequently, $f(G) \subseteq f(U) \subseteq f(P_1$-$\text{cl} \ G) \subseteq T_j$-$\text{cl} \ f(G)$. By hypothesis f is \emptyset-pairwise semiopen and so $f(G)$ is (i,j)-semiopen in Y. And so by Lemma (8.2), $f(U)$ is (i,j)-semiopen in Y. Hence, f is \emptyset^*-pairwise semiopen. //
Since every \(\emptyset \)-pairwise semiopen mapping is \(\emptyset \)-pairwise semiopen, we obtain,

Corollary (8.1): Every almost \(H^* \)-pairwise continuous \(\emptyset \)-pairwise semiopen mapping is \(H^* \)-pairwise semiopen.

Theorem (8.16): Every almost \(H \)-pairwise continuous pairwise semiopen mapping is pairwise presemiopen.

The proof is similar to Theorem (8.15) and uses the following result:

Lemma (8.4): [46]. In a space \((X, P_1, P_2)\) if \(A \) is \(P_1 \)-semiopen and \(A \subseteq B \subseteq P_1 \)-cl \(A \), then \(B \) is \(P_1 \)-semiopen.

Since every pairwise open mapping is pairwise semiopen we have,

Corollary (8.2): Every almost \(H \)-pairwise continuous pairwise open mapping is pairwise presemiopen.

* * * * *