COMMON FIXED POINT THEOREMS FOR
THREE MAPPINGS
CHAPTER I

COMMON FIXED POINT THEOREMS FOR THREE MAPPINGS

1.1 Let \((X,d)\) be a metric space. A mapping \(f:X \rightarrow X\) is called a contraction, if there exists some \(k, 0 \leq k < 1\) such that for all \(x, y \in X\)

\[
(1.1.1) \quad d(f(x), f(y)) \leq k \ d(x, y)
\]

A well known Banach contraction principle states that if \(X\) is complete and \(f\) is continuous mapping, then \(f\) has a unique fixed point.

Further Sehgal[127] generalized the above result given as follows:

THEOREM A: Let \(f : X \rightarrow X\) be a continuous mapping of a complete metric space \((X,d)\). If for each \(x\) in \(X\) there exists a positive integer \(n(x)\) such that for all \(x, y \in X\)

\[
(1.1.2) \quad d(f^{n(x)}(x), f^{n(x)}(y)) \leq k \ d(x, y)
\]

for some constant \(0 \leq k < 1\). Then \(f\) has a unique fixed point \(z \in X\) and \(f^{n(x_0)}(x_0) \rightarrow z\) for each \(x_0 \in X\).

The following generalization of the well known Banach contraction principle for the first time is due to Jungck[63].
THEOREM B: Let f and g be two continuous and commuting self mappings of a complete metric space (X,d) satisfying:

\[(1.1.3) \quad (a)f(x) \equiv g(x) \quad (b) \quad d(f(x),f(y)) \leq k \quad d(g(x),g(y))\]

for all $x, y \in X$, where k is a non-negative real number, $k < 1$. Then f and g have a unique common fixed point.

While, Yeh[154] proved an interesting extension of common fixed point theorem due to Jungck[63], for three continuous self mappings in the following way:

THEOREM C: Let f, g and h be three continuous self mappings of a complete metric space (X,d) satisfying:

\[(1.1.4) \quad fh=hf, \quad gh=hg; \quad f(X) \subset h(X) \quad \text{and} \quad g(X) \subset h(X)\]

and

\[(1.1.5) \quad d(f(x),g(y)) \leq k(d(h(x),h(y)),d(h(x),f(x)))\]

\[d(h(x),g(y)), \quad d(h(y),f(x)), \quad d(h(y),g(y))\]

where k is upper semi-continuous and nondecreasing with respect to each variable and $h(t,t,at,at,t) < t$, for each t in $R^+-\{0\}$, where $a + b = 2$. Then f, g and h have a unique common fixed point in X.

THEOREM D: Let f be a mapping of metric space X into itself such that for all x, y in X,

\[d(f(x), f(y)) \leq a_1 d(y, f(x)) \frac{1 + d(x, f(x))}{1 + d(x, y)} + a_2 d(x, y) \]

and for some $a_1, a_2 \in (0, 1)$ with $a_1 + a_2 < 1$, then f has a unique fixed point in X.

Jaggi[60] has proved that

THEOREM E: Let f be a continuous mapping of a complete metric space X into itself satisfying:

\[d(f(x), f(y)) \leq a_1 \frac{d(x, f(x)) d(y, f(y))}{d(x, y)} + a_2 d(x, y) \]

for all x, y in X, $x \neq y$, and for some $a_1, a_2 \in [0, 1)$, with $a_1 + a_2 < 1$, then f has a unique fixed point in X.

1.2 The object of this chapter is to prove further generalization of Theorem D and Theorem E for three mappings:

THEOREM (1): Let f, g and h be three self-mappings of a complete metric space (X, d) such that the following holds:

(1.2.1) $fh = hf$, $gh = hg$; $f(X) \subseteq h(X)$ and $g(X) \subseteq h(X)$,
(1.2.2) for all \(x, y \) in \(X \)

\[
d(f(x), g(y)) \leq a_1 \frac{d(h(x), f(x))d(h(y), g(y))}{d(h(x), h(y))} + a_2 \frac{d(h(y), g(y))}{[1+d(h(x), f(x))]} + a_3 \frac{d(h(x), h(y))}{[1+d(h(x), h(y))]}\]

where \(h(x) \neq h(y) \). If \(h \) is continuous, then \(f, g \) and \(h \) have a unique common fixed point.

Proof: Let \(x_0 \) be any point in \(X \). Construct a sequence \(\{x_n\} \) in the following way

(1.2.3) \(h x_{2n+1} = f x_{2n} \); \(h x_{2n+2} = g x_{2n+1} \)

for \(n = 0, 1, 2, \ldots \), we can do this since \(f(X) \) and \(g(X) \) are subsets of \(h(X) \).

Now consider,

\[
d(h x_{2n+1}, h x_{2n+2}) = d(f x_{2n}, g x_{2n+1})
\]

\[
\leq a_1 \frac{d(h x_{2n}, f x_{2n})d(h x_{2n+1}, g x_{2n+1})}{d(h x_{2n}, h x_{2n+1})} + a_2 \frac{d(h x_{2n+1}, g x_{2n+1})[1+d(h x_{2n}, f x_{2n})]}{[1+d(h x_{2n}, h x_{2n+1})]}\]
\[+a_3 \frac{d(x_{2n}, x_{2n+1})}{d(x_{2n}, x_{2n+1})} + \frac{d(x_{2n+1}, x_{2n+2})}{d(x_{2n}, x_{2n+1})} \leq a_1 \frac{d(x_{2n+1}, x_{2n+2})[1+d(x_{2n}, x_{2n+1})]}{[1+d(x_{2n}, x_{2n+1})]}\]

Or,

\[+a_2 \frac{d(x_{2n+1}, x_{2n+2})}{d(x_{2n}, x_{2n+1})} \leq a_3 \frac{d(x_{2n}, x_{2n+1})}{1-a_1-a_2}\]

Since \(a_1 + a_2 + a_3 < 1\), it follows that \(c < 1\).

Proceeding in this way, we get

\[d(x_{2n+1}, x_{2n+2}) \leq c^2d(x_{2n-1}, x_{2n}) \leq c^3d(x_{2n-2}, x_{2n-1}) \leq \ldots \leq c^{2n+1}d(x_0, x_n)\]

By routine calculation the following inequality holds for \(k > n\),

\[d(x_n, x_{n+k}) \leq \sum_{i=1}^{k} d(x_{n+i-1}, x_{n+i})\]
\[\leq \sum_{i=1}^{k} c^{n+i-1} d(hx_0, hx_1) \]
\[\leq \left(\frac{c^n}{1-c} \right) d(hx_0, hx_1) \]

\[\rightarrow 0 \text{ as } n \rightarrow \infty \quad (\text{Since } c < 1) \]

Hence \(\{hx_n\} \) is a Cauchy sequence. Since \(X \) is complete, sequence \(\{hx_n\} \) will converge to a point \(z \) in \(X \). Since \(\{fx_{2n}\} \) and \(\{gx_{2x+1}\} \) are subsequences of \(\{hx_n\} \), they will also converge to the same point \(z \).

Using continuity of \(h \) and \((1.2.1)\), we see that
\(h(hx_{2n}) \rightarrow hz \) and \(f(hx_{2n}) = h(fx_{2n}) \rightarrow hz \). Then from
\((1.2.2)\), we have

\[
\begin{align*}
\text{d}(fhx_{2n}, g_z) & \leq a_1 \frac{d(hx_{2n}, fhx_{2n})}{d(hhx_{2n}, h(z))} \frac{d(h(z), g(z))}{d(hhx_{2n}, h(z))} \\
& \quad + a_2 \frac{d(h(z), g(z))[1+d(hhx_{2n}, fhx_{2n})]}{[1+d(hhx_{2n}, h(z))]} \\
& \quad + a_3 d(hhx_{2n}, hz).
\end{align*}
\]

as \(n \rightarrow \infty \), we get

\[
\text{d}(h(z), g(z)) \leq a_1 \text{d}(h(z), g(z)) + a_2 \text{d}(h(z), g(z))
\]
or,

\[
\text{d}(h(z), g(z)) \leq a_1 \text{d}(h(z), g(z)) + a_2 \text{d}(h(z), g(z))
\]
\[d(h(z), g(z)) \leq (a_1 + a_2) \ d(h(z), g(z)) \]

\[\leq d(h(z), g(z)) \quad \text{as} \quad (a_1 + a_2 < 1) \]

which is a contradiction, hence \(hz = gz \). Similarly \(hz = fz \). Again from (1.2.2) we have,

\[
d(fx_{2n}, gz) \leq a_1 \frac{d(hx_{2n}, fz_{2n}) d(hz, gz)}{d(hx_{2n}, hz)} + a_2 \frac{d(hz, gz)[1 + d(hx_{2n}, fx_{2n})]}{[1 + d(hx_{2n}, hz)]} + a_3 d(hx_{2n}, hz)\]

As \(n \to \infty \), we get \(d(z, g(z)) \leq a_3 d(z, gz) \)

So that \(z = gz \).

Thus \(z \) is a common fixed point of \(f, g \) and \(h \).

Now to prove the uniqueness of the fixed point, let \(u \) and \(v \) (\(u \neq v \)) be two points of \(X \) such that \(fu = gu = hu = u \) and \(fv = gv = hv = v \). Then

\[
d(u, v) = d(fu, gv) \]

\[\leq a_1 \frac{d(hu, fu) \ d(hv, gv)}{d(hu, hv)} + a_2 \frac{d(hv, gv)[1 + d(hu, fu)]}{[1 + d(hu, hv)]} + a_3 d(hu, hv)\]

\[\leq a_3 d(u, v) < d(u, v) \]

which is a contradiction. Hence \(u = v \). This completes our proof.
Remark 1: If we set $f=g$, $h=I_x$ (Identity map on X) and $a_2=0$ in Theorem 1, we get result identical with theorem D.

Remark 2: If $f=g$ and $a_1=a_2=0$, then Theorem C appears as a special case of Theorem 1.

Consider the following example which shows the generality of the Theorem 1.

Example 1: Let $X = [0, 1]$ with usual metric d. If f, g and h maps X into itself and defined as follows:

$$
fx = \begin{cases}
x/4 + 3/8, & x \neq 0 \\
1/2 & x = 0,
\end{cases}
$$

and $hx = 1-x$, $x \in X$.

Clearly h is continuous in $[0, 1]$, h commutes with each of the maps g and h. Also

$$
fX = [3/8, 5/8] \quad hX = X,
$$

$$
gX = [2/5, 3/5] \quad hX = X,
$$

$$
hX = X,
$$

Finally f, g and h have a unique common fixed point $1/2$.

Now we shall prove:

THEOREM (2): Let, f, g and h be three self mappings of a complete metric space (X, d) such that following holds:
(1.2.4) \(fh = hf, \ gh = hg, \ f(X) \subseteq h^r(X) \) and \(g(X) \subseteq h^r(X) \), where \(r \) is some positive integer;

(1.2.5) there exist positive integers \(m, n \) such that for all \(x, y \) in \(X \),

\[
d(f^m x, g^n y) \leq a_1 \frac{d(h^r x, f^m x) \cdot d(h^r y, g^n y)}{d(h^r x, h^r y)} + a_2 \frac{d(h^r y, g^n y)[1 + d(h^r x, f^m x)]}{[1 + d(h^r x, h^r y)]} + a_3 \ d(h^r x, h^r y),
\]

where \(h x \neq h y \), \(a_1, a_2, a_3 \geq 0 \), \(a_1 + a_2 + a_3 < 1 \). If \(h^r \) is continuous, then \(f, g \) and \(h \) have a unique common fixed point.

Proof: From (1.2.4), we have

\[
f^m h^r = h^r f^m; \ g^n h^r = h^r g^n; \ f^m(X) \subseteq f(X) \subseteq h^r(X)
\]

and \(g^n(X) \subseteq g(X) \subseteq h^r(X) \). Therefore by Theorem 1, there exists a unique fixed point \(z \) in \(X \) such that

(1.2.6) \(z = h^r z = f^m z = g^n z \).

This gives, \(h z = h^r(h z) = f^m(h z) = g^n(h z) \).

Therefore \(h z \) is a common fixed point of \(f^m, g^n \) and \(h^r \), also,

\[
f z = h^r(f z) = f^m(f z).
\]
So fz is a common fixed point of h^r and f^m, similarly gz is a common fixed point of h^r and g^n. Using (1.2.5), for $x = fz$ and $y = gz$, we get $gz = fz$. Thus $fz = gz = hz$ are common fixed points of f^m, g^n and h^r. The unicity of z then implies that z is unique common fixed point of f, g and h.

This completes the proof.

Theorem (3): Let f, g and h are three self mappings of a complete metric space (X,d) and satisfying the following conditions:

1. $fgh = hfg$; $gfh = hgf$; $fg(X) \subseteq h(X)$ and $gf(X) \subseteq h(X)$ for all x, y in X.
2. $d(fgx, gfy) \leq a_1 \frac{d(hx, fgx)d(hy, gfy)}{d(hx, hy)} + a_2 \frac{d(hy, gfy)[1+d(hx, fgx)]}{[1+d(hx, hy)]} + a_3 d(hx, hy)$

where $hx \neq hy$, $a_1, a_2, a_3 \geq 0$, $a_1 + a_2 + a_3 < 1$. If h is continuous then f, g and h have a unique common fixed point in X.

Proof: Let $fg = S_1$ and $gf = S_2$, then by (1.2.8), we have

$$d(S_1x, S_2y) \leq a_1 \frac{d(hx, S_1x)}{d(hx, hy)} \frac{d(hy, S_2y)}{d(hx, hy)}$$

$$+ a_2 \frac{d(hy, S_2y)[1+d(hx, S_1x)]}{[1+d(hx, hy)]} + a_3 d(hx, hy)$$
holds for all x, y in X, with $hx \neq hy$, $a_1 + a_2 + a_3 \geq 0$, $a_1 + a_2 + a_3 < 1$ and conditions $S_2 h = hS_2$, $S_1 h = hS_1$, $S_1(X) \subseteq h(X)$, $S_2(X) \subseteq h(X)$ are satisfied. Further h is continuous self-mapping of X, therefore by Theorem 1, there exists a unique fixed point z such that

$$z = S_1 z = S_2 z = hz.$$

Also $fz = f(S_2 z) = fg(fz) = S_1(fz)$

and $gz = g(S_1 z) = gf(fz) = S_2(fz)$.

This means that fz is a fixed point of S_1 and gz is a fixed point of S_2. The uniqueness of z implies,

$$z = fz = gz = hz.$$

This completes the proof.

Remark 3: If we put $f = g$ and $h = Ix$ (Identity map) and $a_2 = 0$, then theorem E appears as a special case of our Theorems 3.

Remark 4: If we put $f = g$, $h = Ix$ and $a_1 = 0$, then theorem D appears as particular case of our Theorem 3.

1.3 In this section we obtain some fixed point theorems for three self maps satisfying a rational expression.

In 1978, Fishor[41] proved the following theorem:
THEOREM F: Let f and g be self mappings of a complete metric space (X,d) such that

$$(1.3.1) \quad d(fx,gy) \leq a \frac{[d(x,fx)]^2 + [d(y,gy)]^2}{[d(x,fx) + d(y,gy)]}$$

for all x,y in X, for which $d(x,fx) + d(y,gy) \neq 0$, where $0 \leq a < 1$. Then f and g have a common fixed point z. Further if $d(x,fx) + d(y,gy) = 0$ implies $d(fx,gy) = 0$, then z is the unique common fixed point of f and g.

We generalize Theorem F, by adding an additional factor in numerator and denominator both. In fact we give our Theorem 1 of [105].

THEOREM(4): Let f, g and h be three continuous self mappings of a complete metric space (X,d) which satisfy

$$(1.3.2) \quad fh = hf, \quad gh = hg; \quad f(X) \subseteq h(X) \text{ and } g(X) \subseteq h(X),$$

$$(1.3.3) \quad d(fx,gy) \leq a \frac{d(hx,fx) + [d(hx,hy)]^2 + d(hx,gy)d(hy,fx)}{d(hy,fx) + d(hx,hy) + d(hy,gy)}$$

for all x,y in X with $x \neq y$, $0 < k < 1$, and $d(hx,fx) + d(hx,hy) + d(hy,gy) \neq 0$ and let h is continuous, then f,g and h have a unique common fixed point.

Proof: Let x_0 be any point in X, let x_1 in X be such that $hx_1 = fx_0$ and x_2 in X be such that $hx_2 = gx_1$. In general, we can choose x_{2n+1} and x_{2n+2} such that
(1.3.4) \(h_{x_{2n+1}} = f_{x_{2n}} ; h_{x_{2n+2}} = g_{x_{2n+1}} \) for \(n = 0,1,2 \ldots \),
we can do this since (1.3.2) holds.

Now from (1.3.3), we have

\[
d(h_{x_{2n+1}}, h_{x_{2n+2}}) = d(f_{x_{2n}}, g_{x_{2n+1}})
\]

\[
d(h_{x_{2n}}, h_{x_{2n+1}})d(h_{x_{2n+1}}, h_{x_{2n+2}}) + \left[d(h_{x_{2n}}, h_{x_{2n+1}}) \right]^2
+ \frac{d(h_{x_{2n}}, h_{x_{2n+2}})d(h_{x_{2n+1}}, h_{x_{2n+2}})}{d(h_{x_{2n+1}}, h_{x_{2n+1}}) + d(h_{x_{2n}}, h_{x_{2n+1}}) + d(h_{x_{2n+1}}, h_{x_{2n+2}})}
\]

\[
= a \ d(h_{x_{2n}}, h_{x_{2n+1}}).
\]

This yields that,

\[
d(h_{x_{2n+1}}, h_{x_{2n+2}}) \leq a \ d(h_{x_{2n}}, h_{x_{2n+1}}).
\]

Proceeding in this way, we get

\[
d(h_{x_{2n+1}}, h_{x_{2n+2}}) \leq a \ d(h_{x_{2n}}, h_{x_{2n+1}})
\leq a^2 \ d(h_{x_{2n-1}}, h_{x_{2n}}) \leq \ldots \leq a^{2n+1} d(h_{x_0}, h_{x_1}).
\]

Consider for \(k > n \), we have,

\[
d(h_{x_n}, h_{x_{n+k}}) \leq \sum_{i=1}^{k} d(h_{x_{n+i-1}}, h_{x_{n+i}})
\]

\[
\leq \sum_{i=1}^{k} a^{n+i-1} d(h_{x_0}, h_{x_1}) \leq \ldots \leq \frac{a^n}{1-a} d(h_{x_0}, h_{x_1}), (a < 1),
\]

which tends to zero as \(n \to \infty \). It follows that \(\{h_{x_n}\} \) is
a Cauchy sequence. By the completeness of X, there exists z in X such that $\{hx_n\}$ tends to z. From (1.3.2), $\{fx_{2n}\}$ and $\{gx_{2n+1}\}$ also converges to z.

Using continuity of h and (1.3.2), we have

(1.3.5) $f(hx_{2n}) = h(fx_{2n}) \to hz$,

(1.3.6) $g(hx_{2n+1}) = h(gx_{2n+1}) \to hz$,

(1.3.7) $h(hx_{2n}) \to hz$.

Now, we show that $f(hx_{2n}) = fz$. If we assume that, $f(hx_{2n}) \neq fz$, then $d(fhx_{2n}, fz) \geq 0$. Consider the inequality

$$d(fhx_{2n}, fz) \leq d(fhx_{2n}, ghx_{2n+1}) + d(ghx_{2n+1}, fz).$$

Using (1.3.3), we have

$$d(f(hx_{2n}), fz)$$

$$d(hhx_{2n}, fhx_{2n})d(hhx_{2n+1}, gx_{2n+1}) + [d(hhx_{2n}, hhx_{2n+1})^2]$$

$$+d(hhx_{2n}, gx_{2n+1})d(hhx_{2n+1}, fhx_{2n})$$

$$\leq a \frac{d(hhx_{2n+1}, fhx_{2n}) + d(hhx_{2n}, hhx_{2n+1}) + d(hhx_{2n+1}, ghx_{2n})}{d(hhx_{2n+1}, fhx_{2n}) + d(hhx_{2n+1}, ghx_{2n})}.$$

On letting $n \to \infty$ and applying (1.3.5), (1.3.6) and (1.3.7), we get

$$d(hz, fz) \leq 0.$$
leading to a contradiction. Hence it follows that,
\[d(hz, fz) = 0, \] which implies \(hz = fz \).

Similarly we can prove that, \(gz = hz \).

Thus we have \(fz = hz = gz \).

Also from (1.3.2), we have

\[(1.3.8) \ h(hz) = h(fz) = f(hz) = f(fz) = h(gz) = g(hz) \]

\[= g(fz) = g(gz) \]

By (1.3.3) and (1.3.8), if \(fz = g(fz) \), we have

\[d(hz, hz) + d(hfzg(fz)) + [d(hz, h(fz))]^2 \]

\[+ d(hz, g(fz))d(h(fz), fz) \]

\[d(fz, g(fz)) \leq a \frac{d(h(fz), fz) + d(hz, h(fz)) + d(h(fz), g(fz))}{d(h(fz), fz) + d(hz, h(fz)) + d(hz, g(fz))} \]

\[= a \ d(fz, g(fz)), \]

which is a contradiction, therefore \(d(fz, g(fz)) = 0 \).

Hence, \(fz = g(fz) \). Now (1.3.8) gives,

\[fz = g(fz) = f(fz) = h(fz), \]

which shows that \(fz \) is a common fixed point of \(f, g \) and \(h \).

Now to prove the uniqueness of fixed point, let \(u \) and \(v \) be two distinct points in \(X \) such that \(fu = gu = hu = u \) and \(fv = gv = hv = v \). Then (1.3.3) we have,
\[\frac{d(u,v)d(u,v)+[d(u,v)]^2+d(u,v)d(u,v)}{d(u,v)+d(u,v)+d(u,v)} \leq (a/2) d(u,v) < d(u,v), \]

a contradiction. Hence \(u = v \).

This implies the uniqueness of common fixed point of \(f, g \) and \(h \). This completes the proof.

Remark 5: Yeh[154] has considered, three mappings \(f, g \) and \(h \) as continuous, but here we consider only one mapping as continuous.

Corollary (1): Let \(f \) be a self mapping of a complete metric space \((X, d) \) and satisfying the inequality

\[d(fx, fy) \leq a \frac{d(x, fx)d(y, fy) + [d(x, y)]^2+d(x, fy)d(y, fx)}{d(x, fx) + d(x, y) + d(x, fy)} \]

for all \(x, y \) in \(X \) with \(x \neq y \), \(0 < a < 1 \) and \(d(x, fx) + d(x, y) + d(x, fy) \neq 0 \), then \(f \) has unique fixed point.

Consider the following example, which shows the generality of above Corollary 1.

Example 2: Let \(X = [0, 1] \) be a usual metric space and \(f : [0, 1/2] \to [0, 1/2] \) be defined such that

\[fx = \begin{cases} \frac{x}{3} & \text{when } 0 \leq x \leq 1/2, \\ 1/4 & \text{when } x = 1/2. \end{cases} \]
This example satisfies all the conditions and inequality of the above Corollary for $1/2 \leq a \leq 1$. Although the function is discontinuous at $x = 1/2$, also $f(0) = 0$ i.e. zero is the unique fixed point of f.

COROLLARY (2): Let A be a family of continuous self mappings of a complete metric space (X,d). Suppose there is a map h in A such that to each pair f and g, the conditions (1.3.2) and (1.3.3) holds, for all x, y in X. Then f has a unique fixed point, which is a unique common fixed point for the family of A.

1.4 Following Sehgal[127], we prove a Theorem which is a generalization of Theorem 4.

THEOREM (5): Let f, g and h be three self mappings of a complete metric space (X,d) such that h is continuous and f, g and h satisfy the condition (1.3.2) and there exists two positive integers m and n such that

$$d(hx,f^m x) = d(hy,g^n y) + d[(hx,hy)]^2$$

$$d(f^m x, g^n y) \leq a + \frac{d(hx,g^n y) d(hy,f^m x)}{d(hy,f^m x) + d(hx,hy) + d(hy,g^n y)}$$

for all x, y in X, with $x \neq y$. $0 < a < 1$ and $d(hy,f^m x) + d(hx,hy) + d(hy,g^n y) \neq 0$, then f, g and h have unique common fixed point.

Proof: It follows from (1.3.2), that $f^m h = hf^m$; $g^n h = hg^n$;
\[f^m(X) \subseteq f(X) \subseteq h(X) \text{ and } g^n(X) \subseteq g(X) \subseteq h(X), \] thus by Theorem 4 there is a unique fixed point \(z \) in \(X \) such that

\[z = hz = f^mz = g^nz. \]

Also, \(h(fz) = f(hz) = fz = f(f^mz) = f^m(fz) \).

This means that \(fz \) is a common fixed point of \(h \) and \(f^m \).
Similarly \(g \) is a common fixed point of \(h \) and \(g^n \). The uniqueness of \(z \) implies \(fz = gz = hz = z \).

This completes the proof.

Finally, we prove

THEOREM 6: Let \(h \) and \(h_i \) (\(i=1,2,...,k \)) be self mappings of a complete metric space \((X,d)\), such that \(h \) is continuous and \(h, h_i \) satisfy the following conditions:

(1.4.2) \(h_i h_j = h_j h_i \); \(hh_i = h_i h \) for \(i, j = 1,2,...,k \).

(1.4.3) \(f(X) \subseteq h(X) \), where \(f = h_1, h_2, h_3, ..., h_k \).

(1.4.4) for \(f=g \), the condition (1.4.2) holds, then \(h \)

\(h_i \) (\(i = 1,2,...,k \)) have a unique common fixed point.

Proof: By Theorem 5, \(f \) and \(g \) have a unique common fixed point \(z \) in \(X \). Thus \(fz = hz = z \). Then

\[h_i(fz) = h_i(hz) = h_i z. \]

Hence \(h_i z \) is a common fixed point of \(f \) and \(h \). By the uniqueness of the common fixed point of \(f \) and \(h \), we have \(h_i z = z \). This completes the proof of the theorem.

\[* * * * \]