<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Particulars</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2.1</td>
<td>Coating Deposition Techniques (Bhushan and Gupta, 1991; Srokes, 2005).</td>
<td>21</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Schematic development of the thermal spray process and mechanism of coating the build-up (Matthews, 2004).</td>
<td>22</td>
</tr>
<tr>
<td>Fig. 2.3</td>
<td>Classification of thermal spray coating processes (Pawlowski, 1995).</td>
<td>22</td>
</tr>
<tr>
<td>Fig. 4.1</td>
<td>SEM Micrograph for the alloy powders: a) 65% Cr\textsubscript{3}C\textsubscript{2} - 35% (Ni-20Cr) b) 75% Cr\textsubscript{3}C\textsubscript{2} - 25% (Ni-20Cr) c) 80% Cr\textsubscript{3}C\textsubscript{2} - 20% (Ni-20Cr) and d) 90% Cr\textsubscript{3}C\textsubscript{2} - 10% (Ni-20Cr).</td>
<td>49</td>
</tr>
<tr>
<td>Fig. 4.2</td>
<td>Macrographs for the as-sprayed samples: a) 65% Cr\textsubscript{3}C\textsubscript{2} - 35% (Ni-20Cr) b) 75% Cr\textsubscript{3}C\textsubscript{2} - 25% (Ni-20Cr) c) 80% Cr\textsubscript{3}C\textsubscript{2} - 20% (Ni-20Cr) and d) 90% Cr\textsubscript{3}C\textsubscript{2} - 10% (Ni-20Cr).</td>
<td>50</td>
</tr>
<tr>
<td>Fig. 4.3</td>
<td>FE-SEM back scattered electron (BSE) images showing cross-sectional morphologies of HVOF sprayed coatings on T-91 steel: a) 65% Cr\textsubscript{3}C\textsubscript{2} - 35% (Ni-20Cr) b) 75% Cr\textsubscript{3}C\textsubscript{2} - 25% (Ni-20Cr) c) 80% Cr\textsubscript{3}C\textsubscript{2} - 20% (Ni-20Cr) and d) 90% Cr\textsubscript{3}C\textsubscript{2} - 10% (Ni-20Cr).</td>
<td>53</td>
</tr>
<tr>
<td>Fig. 4.4</td>
<td>Micro-hardness profiles of HVOF sprayed coatings on T-91 boiler steel.</td>
<td>54</td>
</tr>
<tr>
<td>Fig. 4.5</td>
<td>Optical micrographs showing cross-sectional microstructure of HVOF spray coatings: a) 65% Cr\textsubscript{3}C\textsubscript{2} - 35% (Ni-20Cr) b) 75% Cr\textsubscript{3}C\textsubscript{2} - 25% (Ni-20Cr) c) 80% Cr\textsubscript{3}C\textsubscript{2} - 20% (Ni-20Cr) and d) 90% Cr\textsubscript{3}C\textsubscript{2} - 10% (Ni-20Cr).</td>
<td>55</td>
</tr>
<tr>
<td>Fig. 4.6</td>
<td>X- Ray Diffraction Pattern of 65%Cr\textsubscript{3}C\textsubscript{2} - 35% (Ni-20Cr) powder and coated substrate.</td>
<td>58</td>
</tr>
<tr>
<td>Fig. 4.7</td>
<td>X- Ray Diffraction Pattern of 75%Cr\textsubscript{3}C\textsubscript{2} - 25% (Ni-20Cr) powder and coated substrate.</td>
<td>59</td>
</tr>
<tr>
<td>Fig. 4.8</td>
<td>X- Ray Diffraction Pattern of 80%Cr\textsubscript{3}C\textsubscript{2} - 20% (Ni-20Cr) powder and coated substrate.</td>
<td>60</td>
</tr>
<tr>
<td>Fig. 4.9</td>
<td>X- Ray Diffraction Pattern of 90%Cr\textsubscript{3}C\textsubscript{2} - 10% (Ni-20Cr) powder and coated substrate.</td>
<td>61</td>
</tr>
</tbody>
</table>
Fig. 4.10 SEM micrograph and EDS analysis of the surface of the as sprayed 65% Cr₃C₂-35% (Ni-20Cr) coated steel.

Fig. 4.11 SEM micrograph and EDS analysis of the surface of the as sprayed 75% Cr₃C₂-25% (Ni-20Cr) coated steel.

Fig. 4.12 SEM micrograph and EDS analysis of the surface of the as sprayed 80% Cr₃C₂-20% (Ni-20Cr) coated steel.

Fig. 4.13 SEM micrograph and EDS analysis of the surface of the as sprayed 90% Cr₃C₂-10% (Ni-20Cr) coated steel.

Fig. 4.14 Cross-sectional morphology and elemental composition analysis of 65% Cr₃C₂-35% (Ni-20Cr) coated steel.

Fig. 4.15 Cross-sectional morphology and elemental composition analysis of 75% Cr₃C₂-25% (Ni-20Cr) coated sample.

Fig. 4.16 Cross-section morphology and elemental composition analysis of 80% Cr₃C₂-20% (Ni-20Cr) coated steel.

Fig. 4.17 Cross-sectional morphology and elemental composition analysis of 90% Cr₃C₂-10% (Ni-20Cr) coated steel.

Fig. 4.18 Composition Image (SE) and X-ray elemental mappings from cross-section of as coated 65% Cr₃C₂-35% (Ni-20Cr) steel.

Fig. 4.19 Composition Image (SE) and X-ray elemental mappings from cross-section of as coated 75% Cr₃C₂-25% (Ni-20Cr) steel.

Fig. 4.20 Composition Image (SE) and X-ray elemental mappings from cross-section of as coated 80% Cr₃C₂-20% (Ni-20Cr) steel.

Fig. 4.21 Composition Image (SE) and X-ray elemental mappings from cross-section of as coated 90% Cr₃C₂-10% (Ni-20Cr) steel.

Fig. 5.1 Macrographs of uncoated T-91 boiler tube steel after hot-corrosion in the molten salt environment of Na₂SO₄-60% V₂O₅ at a) 550°C, b) 700°C and c) 850°C for 50 cycles.

Fig. 5.2 Weight gain plot for uncoated T-91 boiler tube steel subjected to corrosion in molten salt (Na₂SO₄-60%V₂O₅) environment at different temperatures viz. 550°C, 700°C and 850°C for 50 cycles.

Fig. 5.3 Weight gain square plot for uncoated T-91 boiler tube steel subjected to corrosion in molten salt (Na₂SO₄-60%V₂O₅) environment at different temperatures viz. 550°C, 700°C and 850°C for 50 cycles.
Fig. 5.4 X-ray diffraction profiles of the uncoated T-91 boiler steel subjected to corrosion in molten salt (Na$_2$SO$_4$-60%V$_2$O$_5$) environment at a) 550°C b) 700°C and c) 850°C for 50 cycles.

Fig. 5.5 FE-SEM back scattered images for T-91 boiler steel subjected to cyclic hot corrosion in Na$_2$SO$_4$-60%V$_2$O$_5$ for 50 cycles at (a) 550°C and (b) 700°C.

Fig. 5.6 SEM micrograph with EDS spectrum of the uncoated T-91 boiler tube steel samples showing surface morphology after cyclic hot corrosion in Na$_2$SO$_4$–60%V$_2$O$_5$ environment for 50 cycles at 550°C.

Fig. 5.7 SEM micrograph with EDS spectrum of the uncoated T-91 boiler tube steel samples showing surface morphology after cyclic hot corrosion in Na$_2$SO$_4$–60%V$_2$O$_5$ environment for 50 cycles at 700°C.

Fig. 5.8 SEM micrograph with EDS spectrum of the uncoated T-91 boiler tube steel samples showing surface morphology after cyclic hot corrosion in Na$_2$SO$_4$–60%V$_2$O$_5$ environment for 50 cycles at 550°C.

Fig. 5.9 Cross-sectional analysis and elemental composition variation of uncoated T-91 boiler tube steel samples after cyclic hot corrosion at 550°C in Na$_2$SO$_4$–60%V$_2$O$_5$ environment for 50 cycles.

Fig. 5.10 Cross-sectional analysis and elemental composition variation of uncoated T-91 boiler tube steel after cyclic hot corrosion at 700°C in Na$_2$SO$_4$–60%V$_2$O$_5$ environment for 50 cycles.

Fig. 5.11 Composition image (SE) and X-ray mapping of the cross-section of the uncoated T-91 boiler tube steel subjected to cyclic corrosion at 550°C in Na$_2$SO$_4$–60% V$_2$O$_5$ corrosive environment for 50 cycles.

Fig. 5.12 Composition image (SE) and X-ray mapping of the cross-section of the uncoated T-91 boiler tube steel subjected to cyclic oxidation at 700°C in Na$_2$SO$_4$–60% V$_2$O$_5$ corrosive environment for 50 cycles.

Fig. 5.13 Composition image (SE) and X-ray mapping of the cross-section of the uncoated T-91 boiler tube steel subjected to cyclic oxidation at 850°C in Na$_2$SO$_4$–60% V$_2$O$_5$ corrosive environment for 50 cycles.

Fig. 5.14 Macrographs of 65% Cr$_3$C$_2$ -35% (Ni-20Cr) coated T-91 boiler tube steel after hot-corrosion in the molten salt boiler
environment of Na$_2$SO$_4$-60%V$_2$O$_5$ at a) 550°C, b) 700°C and c) 850°C for 50 cycles.

Fig. 5.15 Weight gain plot for 65% Cr$_3$C$_2$-35% (Ni-20Cr) coated T-91 boiler tube steel subjected to corrosion in molten salt (Na$_2$SO$_4$-60%V$_2$O$_5$) environment at different operating temperatures viz. 550°C, 700°C and 850°C for 50 cycles.

Fig. 5.16 Weight gain square plot for 65% Cr$_3$C$_2$ -35% (Ni-20Cr) coated T-91 boiler tube steel subjected to corrosion in molten salt (Na$_2$SO$_4$-60%V$_2$O$_5$) environment at different operating temperatures viz. 550°C, 700°C and 850°C for 50 cycles.

Fig. 5.17 X-ray diffraction profiles of the 65% Cr$_3$C$_2$ -35% (Ni-20Cr) coated T-91 boiler tube steel subjected to corrosion in molten salt (Na$_2$SO$_4$-60%V$_2$O$_5$) environment at: a) 550°C b) 700°C and c) 850°C for 50 cycles.

Fig. 5.18 FE-SEM back scattered images for 65% Cr$_3$C$_2$ -35% (Ni-20Cr) coated T-91 boiler tube steel subjected to cyclic hot corrosion in Na$_2$SO$_4$-60%V$_2$O$_5$ for 50 cycles at : (a) 550°C (b) 700°C and (c) 850°C.

Fig. 5.19 SEM micrograph with EDS spectrum of the 65% Cr$_3$C$_2$ -35% (Ni-20Cr) coated T-91 boiler tube steel sample showing surface morphology after cyclic hot corrosion in Na$_2$SO$_4$-60%V$_2$O$_5$ environment for 50 cycles at 550°C.

Fig. 5.20 SEM micrograph with EDS spectrum of the 65% Cr$_3$C$_2$ -35% (Ni-20Cr) coated T-91 boiler tube steel sample showing surface morphology after cyclic hot corrosion in Na$_2$SO$_4$-60%V$_2$O$_5$ environment for 50 cycles at 700°C.

Fig. 5.21 SEM micrograph with EDS spectrum of the 65% Cr$_3$C$_2$ -35% (Ni-20Cr) coated T-91 boiler tube steel sample showing surface morphology after cyclic hot corrosion in Na$_2$SO$_4$-60%V$_2$O$_5$ environment for 50 cycles at 850°C.

Fig. 5.22 Cross-sectional analysis and elemental composition variation of 65% Cr$_3$C$_2$ -35% (Ni-20Cr) coated T-91 boiler tube steel sample after cyclic hot corrosion in Na$_2$SO$_4$-60%V$_2$O$_5$ environment for 50 cycles at 550°C.

Fig. 5.23 Cross-sectional analysis and elemental composition variation of 65% Cr$_3$C$_2$ -35% (Ni-20Cr) coated T-91 boiler tube steel sample after cyclic hot corrosion in Na$_2$SO$_4$-60%V$_2$O$_5$ environment for 50 cycles at 700°C.

Fig. 5.24 Cross-sectional analysis and elemental composition variation of
65% Cr$_3$C$_2$ -35% (Ni-20Cr) coated T-91 boiler tube steel sample after cyclic hot corrosion in Na$_2$SO$_4$-60%V$_2$O$_5$ environment for 50 cycles at 850°C.

Fig. 5.25 Composition image (SE) and X-ray mapping of the cross-section of the 65% Cr$_3$C$_2$ -35% (Ni-20Cr) coated T-91 boiler tube steel subjected to cyclic oxidation at 550°C in Na$_2$SO$_4$-60%V$_2$O$_5$ corrosive environment for 50 cycles.

Fig. 5.26 Composition image (SE) and X-ray mapping of the cross-section of the 65% Cr$_3$C$_2$ -35% (Ni-20Cr) coated T-91 boiler tube steel subjected to cyclic oxidation at 700°C in Na$_2$SO$_4$-60%V$_2$O$_5$ corrosive environment for 50 cycles.

Fig. 5.27 Composition image (SE) and X-ray mapping of the cross-section of the 65%Cr$_3$C$_2$ -35% (Ni-20Cr) coated T-91 boiler tube steel subjected to cyclic oxidation at 850°C in Na$_2$SO$_4$-60%V$_2$O$_5$ corrosive environment for 50 cycles.

Fig. 5.28 Macrographs of 75% Cr$_3$C$_2$ -25% (Ni-20Cr) coated T-91 boiler tube steel after hot-corrosion in the molten salt boiler environment of Na$_2$SO$_4$-60%V$_2$O$_5$ at : a) 550°C, b) 700°C and c) 850°C for 50 cycles.

Fig. 5.29 Weight gain plot for 75% Cr$_3$C$_2$ -25% (Ni-20Cr) coated T-91 boiler tube steel subjected to corrosion in molten salt (Na$_2$SO$_4$-60%V$_2$O$_5$) environment at different operating temperatures viz. 550°C, 700°C and 850°C for 50 cycles.

Fig. 5.30 Weight gain square plot for 75% Cr$_3$C$_2$ -25% (Ni-20Cr) coated T-91 boiler tube steel subjected to corrosion in molten salt (Na$_2$SO$_4$-60%V$_2$O$_5$) environment at different operating temperatures viz. 550°C, 700°C and 850°C for 50 cycles.

Fig. 5.31 X-ray diffraction profiles of the 75% Cr$_3$C$_2$ -25% (Ni-20Cr) coated T-91 boiler tube steel subjected to corrosion in molten salt (Na$_2$SO$_4$-60%V$_2$O$_5$) environment at a) 550°C b) 700°C and c) 850°C for 50 cycles.

Fig. 5.32 FE-SEM back scattered images for 75% Cr$_3$C$_2$ -25% (Ni-20Cr) coated T-91 boiler tube steel subjected to cyclic hot corrosion in Na$_2$SO$_4$-60%V$_2$O$_5$ for 50 cycles at (a) 550°C (b) 700°C and (c) 850°C.

Fig. 5.33 SEM micrograph with EDS spectrum of the 75% Cr$_3$C$_2$ -25% (Ni-20Cr) coated T-91 boiler tube steel samples showing surface morphology after cyclic hot corrosion in Na$_2$SO$_4$-60%V$_2$O$_5$ environment for 50 cycles at 550°C.
Fig. 5.34 SEM micrograph with EDS spectrum of the 75% Cr₃C₂-25% (Ni-20Cr) coated T-91 boiler tube steel samples showing surface morphology after cyclic hot corrosion in Na₂SO₄-60%V₂O₅ environment for 50 cycles at 700°C.

Fig. 5.35 SEM micrograph with EDS spectrum of the 75% Cr₃C₂-25% (Ni-20Cr) coated T-91 boiler tube steel samples showing surface morphology after cyclic hot corrosion in Na₂SO₄-60%V₂O₅ environment for 50 cycles at 850°C.

Fig. 5.36 Cross-sectional analysis and elemental composition variation of 75% Cr₃C₂-25% (Ni-20Cr) coated T-91 boiler tube steel samples after cyclic hot corrosion in Na₂SO₄-60%V₂O₅ environment for 50 cycles at 550°C.

Fig. 5.37 Cross-sectional analysis and elemental composition variation of 75% Cr₃C₂-25% (Ni-20Cr) coated T-91 boiler tube steel samples after cyclic hot corrosion in Na₂SO₄-60%V₂O₅ environment for 50 cycles at 700°C.

Fig. 5.38 Cross-sectional analysis and elemental composition variation of 75% Cr₃C₂-25% (Ni-20Cr) coated T-91 boiler tube steel samples after cyclic hot corrosion in Na₂SO₄-60%V₂O₅ environment for 50 cycles at 850°C.

Fig. 5.39 Composition image (SE) and X-ray mapping of the cross-section of the 75% Cr₃C₂-25% (Ni-20Cr) coated T-91 boiler tube steel subjected to cyclic oxidation at 550°C in Na₂SO₄-60% V₂O₅ corrosive environment for 50 cycles.

Fig. 5.40 Composition image (SE) and X-ray mapping of the cross-section of the 75% Cr₃C₂-25% (Ni-20Cr) coated T-91 boiler tube steel subjected to cyclic oxidation at 700°C in Na₂SO₄-60% V₂O₅ corrosive environment for 50 cycles.

Fig. 5.41 Composition image (SE) and X-ray mapping of the cross-section of the 75% Cr₃C₂-25% (Ni-20Cr) coated T-91 boiler tube steel subjected to cyclic oxidation at 850°C in Na₂SO₄-60% V₂O₅ corrosive environment for 50 cycles.

Fig. 5.42 Macrographs of 80% Cr₃C₂-20% (Ni-20Cr) coated T-91 boiler tube steel after hot-corrosion in the molten salt boiler environment of Na₂SO₄-60%V₂O₅ at: a) 550°C, b) 700°C and c) 850°C for 50 cycles.

Fig. 5.43 Weight gain plot for 80% Cr₃C₂-20% (Ni-20Cr) coated T-91 boiler tube steel subjected to corrosion in molten salt (Na₂SO₄-60%V₂O₅) environment at different operating temperatures viz. 550°C, 700°C and 850°C for 50 cycles.
Fig. 5.44 Weight gain square plot for 80% Cr$_3$C$_2$ -20% (Ni-20Cr) coated T-91 boiler tube steel subjected to corrosion in molten salt (Na$_2$SO$_4$-60%V$_2$O$_5$) environment at different operating temperatures viz. 550°C, 700°C and 850°C for 50 cycles.

Fig. 5.45 X-ray diffraction profiles of the 80% Cr$_3$C$_2$ -20% (Ni-20Cr) coated T-91 boiler tube steel subjected to corrosion in molten salt (Na$_2$SO$_4$-60%V$_2$O$_5$) environment at: a) 550°C b) 700°C and c) 850°C for 50 cycles.

Fig. 5.46 FE-SEM back scattered images for 80% Cr$_3$C$_2$ -20% (Ni-20Cr) coated T-91 boiler tube steel subjected to cyclic hot corrosion in Na$_2$SO$_4$-60%V$_2$O$_5$ for 50 cycles at: (a) 550°C (b) 700°C and (c) 850°C.

Fig. 5.47 SEM micrograph with EDS spectrum of the 80% Cr$_3$C$_2$ -20% (Ni-20Cr) coated T-91 boiler tube steel sample showing surface morphology after cyclic hot corrosion in Na$_2$SO$_4$–60%V$_2$O$_5$ environment for 50 cycles at 550°C.

Fig. 5.48 SEM micrograph with EDS spectrum of the 80% Cr$_3$C$_2$ -20% (Ni-20Cr) coated T-91 boiler tube steel samples showing surface morphology after cyclic hot corrosion in Na$_2$SO$_4$–60%V$_2$O$_5$ environment for 50 cycles at 700°C.

Fig. 5.49 SEM micrograph with EDS spectrum of the 80% Cr$_3$C$_2$ -20% (Ni-20Cr) coated T-91 boiler tube steel samples showing surface morphology after cyclic hot corrosion in Na$_2$SO$_4$–60%V$_2$O$_5$ environment for 50 cycles at 850°C.

Fig. 5.50 Cross-sectional analysis and elemental composition variation of 80% Cr$_3$C$_2$ -20% (Ni-20Cr) coated T-91 boiler tube steel samples after cyclic hot corrosion in Na$_2$SO$_4$–60%V$_2$O$_5$ environment for 50 cycles at 550°C.

Fig. 5.51 Cross-sectional analysis and elemental composition variation of 80% Cr$_3$C$_2$ -20% (Ni-20Cr) coated T-91 boiler tube steel samples after cyclic hot corrosion in Na$_2$SO$_4$–60%V$_2$O$_5$ environment for 50 cycles at 700°C.

Fig. 5.52 Cross-sectional analysis and elemental composition variation of 80% Cr$_3$C$_2$ -20% (Ni-20Cr) coated T-91 boiler tube steel samples after cyclic hot corrosion in Na$_2$SO$_4$–60%V$_2$O$_5$ environment for 50 cycles at 850°C.

Fig. 5.53 Composition image (SE) and X-ray mapping of the cross-section of the 80% Cr$_3$C$_2$ -20% (Ni-20Cr) coated T-91 boiler tube steel subjected to cyclic oxidation at 550°C in Na$_2$SO$_4$–60% V$_2$O$_5$.
corrosive environment for 50 cycles.

Fig. 5.54 Composition image (SE) and X-ray mapping of the cross-section of the 80% Cr₃C₂-20% (Ni-20Cr) coated T-91 boiler tube steel subjected to cyclic oxidation at 700°C in Na₂SO₄-60% V₂O₅ corrosive environment for 50 cycles.

Fig. 5.55 Composition image (SE) and X-ray mapping of the cross-section of the 80% Cr₃C₂-20% (Ni-20Cr) coated T-91 boiler tube steel subjected to cyclic oxidation at 850°C in Na₂SO₄-60% V₂O₅ corrosive environment for 50 cycles.

Fig. 5.56 Macrographs of 90% Cr₃C₂-10% (Ni-20Cr) coated T-91 boiler tube steel after hot-corrosion in the molten salt boiler environment of Na₂SO₄-60%V₂O₅ at: a) 550°C, b) 700°C and c) 850°C for 50 cycles.

Fig. 5.57 Weight gain plot for 90% Cr₃C₂-10% (Ni-20Cr) coated T-91 boiler tube steel subjected to corrosion in molten salt (Na₂SO₄-60%V₂O₅) environment at different operating temperatures viz. 550°C, 700°C and 850°C for 50 cycles.

Fig. 5.58 Weight gain square plot for 90% Cr₃C₂-10% (Ni-20Cr) coated T-91 boiler tube steel subjected to corrosion in molten salt (Na₂SO₄-60%V₂O₅) environment at different operating temperatures viz. 550°C, 700°C and 850°C for 50 cycles.

Fig. 5.59 X-ray diffraction profiles of the 90% Cr₃C₂-10% (Ni-20Cr) coated T-91 boiler tube steel subjected to corrosion in molten salt (Na₂SO₄-60%V₂O₅) environment at: a) 550°C b) 700°C and c) 850°C for 50 cycles.

Fig. 5.60 FE-SEM back scattered images for 90% Cr₃C₂-10% (Ni-20Cr) coated T-91 boiler tube steel subjected to cyclic hot corrosion in Na₂SO₄-60%V₂O₅ for 50 cycles at: (a) 550°C (b) 700°C and (c) 850°C.

Fig. 5.61 SEM micrograph with EDS spectrum of the 90% Cr₃C₂-10% (Ni-20Cr) coated T-91 boiler tube steel sample showing surface morphology after cyclic hot corrosion in Na₂SO₄-60%V₂O₅ environment for 50 cycles at 550°C.

Fig. 5.62 SEM micrograph with EDS spectrum of the 90% Cr₃C₂-10% (Ni-20Cr) coated T-91 boiler tube steel samples showing surface morphology after cyclic hot corrosion in Na₂SO₄-60%V₂O₅ environment for 50 cycles at 700°C.

Fig. 5.63 SEM micrograph with EDS spectrum of the 90% Cr₃C₂-10% (Ni-20Cr) coated T-91 boiler tube steel samples showing surface morphology after cyclic hot corrosion in Na₂SO₄-60%V₂O₅.
environment for 50 cycles at 850°C.

Fig. 5.64 Cross-sectional analysis and elemental composition variation of 90% Cr₃C₂ -10% (Ni-20Cr) coated T-91 boiler tube steel samples after cyclic hot corrosion in Na₂SO₄–60%V₂O₅ environment for 50 cycles at 550°C.

Fig. 5.65 Cross-sectional analysis and elemental composition variation of 90% Cr₃C₂ -10% (Ni-20Cr) coated T-91 boiler tube steel samples after cyclic hot corrosion in Na₂SO₄–60%V₂O₅ environment for 50 cycles at 700°C.

Fig. 5.66 Cross-sectional analysis and elemental composition variation of 90% Cr₃C₂ -10% (Ni-20Cr) coated T-91 boiler tube steel samples after cyclic hot corrosion in Na₂SO₄–60%V₂O₅ environment for 50 cycles at 850°C.

Fig. 5.67 Composition image (SE) and X-ray mapping of the cross-section of the 90% Cr₃C₂ -10% (Ni-20Cr) coated T-91 boiler tube steel subjected to cyclic oxidation at 550°C in Na₂SO₄–60% V₂O₅ corrosive environment for 50 cycles.

Fig. 5.68 Composition image (SE) and X-ray mapping of the cross-section of the 90% Cr₃C₂ -10% (Ni-20Cr) coated T-91 boiler tube steel subjected to cyclic oxidation at 700°C in Na₂SO₄–60% V₂O₅ corrosive environment for 50 cycles.

Fig. 5.69 Composition image (SE) and X-ray mapping of the cross-section of the 90% Cr₃C₂ -10% (Ni-20Cr) coated T-91 boiler tube steel subjected to cyclic oxidation at 850°C in Na₂SO₄–60% V₂O₅ corrosive environment for 50 cycles.

Fig. 6.1 Macrograph of the samples subjected to actual boiler environment at 850°C for 1500 hours: a) Uncoated b) 65% Cr₃C₂ -35% (Ni-20Cr) c) 75% Cr₃C₂ -25% (Ni-20Cr) d) 80% Cr₃C₂ -20% (Ni-20Cr) and e) 90% Cr₃C₂ -10% (Ni-20Cr).

Fig. 6.2 X-ray diffraction profiles for the uncoated boiler tube steel subjected to actual boiler environment at 850°C for 1500 hours.

Fig. 6.3 X-ray diffraction profiles for the 65% Cr₃C₂ -35% (Ni-20Cr) coated T-91 boiler tube steel subjected to actual boiler environment at 850°C for 1500 hours.

Fig. 6.4 X-ray diffraction profiles for the 75% Cr₃C₂ -25% (Ni-20Cr) coated T-91 boiler tube steel subjected to actual boiler environment at 850°C for 1500 hours.

Fig. 6.5 X-ray diffraction profiles for the 80% Cr₃C₂ -20% (Ni-20Cr) coated T-91 boiler tube steel subjected to actual
boiler environment at 850°C for 1500 hours.

Fig. 6.6 X-ray diffraction profiles for the 90%Cr$_2$C$_2$ -10% (Ni-20Cr) coated T-91 boiler tube steel subjected to actual boiler environment at 850°C for 1500 hours.

Fig. 6.7 FE-SEM along with EDS analysis for the uncoated T-91 boiler tube steel subjected to actual boiler environment at 850°C for 1500 hours.

Fig. 6.8 FE-SEM along with EDS analysis for the 65% Cr$_2$C$_2$ -35% (Ni-20Cr) coated T-91 boiler tube steel sample subjected to actual boiler environment at 850°C for 1500 hours.

Fig. 6.9 FE-SEM along with EDS analysis for the 75% Cr$_2$C$_2$ -25% (Ni-20Cr) coated T-91 boiler tube steel sample subjected to actual boiler environment at 850°C for 1500 hours.

Fig. 6.10 FE-SEM along with EDS analysis for the 80% Cr$_2$C$_2$ -20% (Ni-20Cr) coated T-91 boiler tube steel sample subjected to actual boiler environment at 850°C for 1500 hours.

Fig. 6.11 FE-SEM along with EDS analysis for the 90% Cr$_2$C$_2$ -10% (Ni-20Cr) coated T-91 boiler tube steel sample subjected to actual boiler environment at 850°C for 1500 hours.

Fig. 6.12 Oxide scale morphology and variation of elemental composition across the cross section of uncoated T-91 boiler tube steel subjected to actual boiler environment at 850°C for 1500 hours.

Fig. 6.13 Oxide scale morphology and variation of elemental composition across the cross-section of the 65% Cr$_2$C$_2$ -35% (Ni-20Cr) coated T-91 boiler tube steel sample subjected to actual boiler environment at 850°C for 1500 hours.

Fig. 6.14 Oxide scale morphology and variation of elemental composition across the cross-section of the 75% Cr$_2$C$_2$ -25% (Ni-20Cr) coated T-91 boiler tube steel sample subjected to actual boiler environment at 850°C for 1500 hours.

Fig. 6.15 Oxide scale morphology and variation of elemental composition across the cross-section of the 80% Cr$_2$C$_2$ -20% (Ni-20Cr) coated T-91 boiler tube steel sample subjected to actual boiler environment at 850°C for 1500 hours.

Fig. 6.16 Oxide scale morphology and variation of elemental composition across the cross-section of the 90% Cr$_2$C$_2$ -10% (Ni-20Cr) coated T-91 boiler tube steel sample subjected to actual boiler environment at 850°C for 1500 hours.
Fig. 6.17 Composition image (SEI) and X-ray mappings of the cross-section of the uncoated T-91 boiler tube steel subjected to actual boiler environment at 850°C for 1500 hours.

Fig. 6.18 Composition image (SEI) and X-ray mappings of the cross-section of the 65% Cr₃C₂ -35% (Ni-20Cr) coated T-91 boiler tube steel sample subjected to actual boiler environment at 850°C for 1500 hours.

Fig. 6.19 Composition image (SEI) and X-ray mappings of the cross-section of the 75% Cr₃C₂-25% (Ni-20Cr) coated T-91 boiler tube steel sample subjected to actual boiler environment at 850°C for 1500 hours.

Fig. 6.20 Composition image (SEI) and X-ray mappings of the cross-section of the 80% Cr₃C₂-20% (Ni-20Cr) coated T-91 boiler tube steel sample subjected to actual boiler environment at 850°C for 1500 hours.

Fig. 6.21 Composition image (SEI) and X-ray mappings of the cross-section of the 90% Cr₃C₂ -10% (Ni-20Cr) coated T-91 boiler tube steel sample subjected to actual boiler environment at 850°C for 1500 hours.

Fig. 7.1 Thickness loss of uncoated T-91 at different sample temperature and impingement angles during erosion testing.

Fig. 7.2 SEM micrographs showing surface morphology of the eroded surfaces of uncoated T-91 boiler tube steel at: (a) Room temperature and 30° (b) Room temperature and 90° (c) 200°C and 30° (d) 200°C and 90° impingement angle.

Fig. 7.3 SEM micrographs showing surface morphology of the eroded surfaces of uncoated T-91 boiler tube steel at: (a) 400°C and 30° (b) 400°C and 90° (c) 600°C and 30° and (d) 600°C and 90° impingement angle.

Fig. 7.4 Thickness loss of 65% Cr₃C₂ - 35% (Ni-20Cr) coated T-91 boiler tube steel at different sample temperature and impingement angles during erosion testing.

Fig. 7.5 SEM micrographs showing surface morphology of the eroded surfaces of 65%Cr₃C₂ -35% (Ni-20Cr) Coated T-91 boiler tube steel at (a) Room temperature and 30° (b) Room temperature and 90° (c) 200°C and 30° (d) 200°C and 90° impingement angle

Fig. 7.6 SEM micrographs showing surface morphology of the eroded surfaces of 65%Cr₃C₂ -35% (Ni-20Cr) Coated T-91 boiler tube steel at (a) 400°C and 30° (b) 400°C and 90° (c) 600°C and 30°
Fig. 7.7 Thickness loss of the 75% Cr$_3$C$_2$ - 25% (Ni-20Cr) coated T-91 boiler tube steel at different sample temperature and impingement angles during erosion testing.

Fig. 7.8 SEM micrographs showing surface morphology of the 75% Cr$_3$C$_2$-25% (Ni-20Cr) coated sample surfaces at: (a) Room temperature at 30° (b) Room temperature at 90° (c) 200°C at 30° (d) 200°C with 90° impingement angle

Fig. 7.9 SEM micrographs showing surface morphology of the 75% Cr$_3$C$_2$-25% (Ni-20Cr) coated sample surfaces at: (a) Room temperature at 30° (b) Room temperature at 90° (c) 600°C with 30° and (d) 600°C with 90° impingement angle

Fig. 7.10 Thickness loss of the 80% Cr$_3$C$_2$ - 20% (Ni-20Cr) coated T-91 boiler tube steel at different sample temperature and impingement angles during erosion testing.

Fig. 7.11 SEM micrographs showing surface morphology of the 80% Cr$_3$C$_2$-20% (Ni-20Cr) coated sample surfaces at: (a) Room temperature at 30° (b) Room temperature at 90° (c) 200°C at 30° (d) 200°C with 90° impingement angle

Fig. 7.12 SEM micrographs showing surface morphology of the 80% Cr$_3$C$_2$-20% (Ni-20Cr) coated sample surfaces at (a) 400°C with 30° (b) 400°C with 90° (c) 600°C with 30° and (d) 600°C with 90° impingement angle

Fig. 7.13 Thickness loss for 90% Cr$_3$C$_2$ -10% (Ni-20Cr) coated T-91 boiler tube steel at different sample temperature and impingement angles during erosion testing.

Fig. 7.14 SEM micrographs showing surface morphology of the 90% Cr$_3$C$_2$-10% (Ni-20Cr) coated sample surfaces at (a) Room temperature at 30° (b) Room temperature at 90° (c) 200°C at 30° (d) 200°C with 90° impingement angle

Fig. 7.15 SEM micrographs showing surface morphology of the 90% Cr$_3$C$_2$-10% (Ni-20Cr) coated sample surfaces at (a) 400°C with 30° (b) 400°C with 90° (c) 600°C with 30° and (d) 600°C with 90° impingement angle

Fig. 8.1 Bar chart showing cumulative weight gain of the coatings during cyclic hot corrosion in aggressive environment of molten salt of Na$_2$SO$_4$-60% V$_2$O$_5$ at 550°C in laboratory.

Fig. 8.2 Bar chart showing cumulative weight gain of the coatings during
cyclic hot corrosion in aggressive environment of molten salt of
Na$_2$SO$_4$-60% V$_2$O$_5$ at 700°C in laboratory.

Fig. 8.3 Bar chart showing cumulative weight gain of the coatings during
cyclic hot corrosion in aggressive environment of molten salt of
Na$_2$SO$_4$-60% V$_2$O$_5$ at 850°C in laboratory.

Fig. 8.4 Bar chart showing thickness loss of the coatings during air jet
erosion testing for 30° and 90° impingement angle for room
temperature, 200°C, 400°C and 600°C sample temperatures.

Fig. 8.5 Thickness loss of the coatings during erosion-corrosion (E-C) at
850°C in actual boiler environment.