Chapter 2

On a New Subclass $N(\alpha, \beta, \gamma)$ of Univalent Functions

2.1 Abstract

We introduce and investigate some properties and characteristics of a certain three parameter class $N(\alpha, \beta, \gamma)$ of \mathbb{A}, where $\alpha \geq 0, \beta \geq 0$ and $0 \leq \gamma < 1$. We show that a function in this class is univalent and that for any function f in this class, $\text{Re}\left\{\frac{f(z)}{z}\right\} > \frac{1}{2}$. As a consequence, we show that this class is closed under convolution although its superset K is not.

If $f \in N(\alpha, \beta, \gamma)$ and $g \in \mathbb{A}$ is any function with $\text{Re}\left(\frac{g(z)}{z}\right) > \frac{1}{2}$, then we show that $f \ast g \in N(\alpha, \beta, \gamma)$ and hence obtain some interesting convolution properties of this class.

Majority of the results of this chapter are obtained using convolution techniques. A pivotal role in the proofs of first four theorems is played by lemmas.
due to Duren P L [15] and Fejer L [17] pertaining to convex hull of the image of E under a function f and analytic functions with convex null sequences as their Taylor coefficients, respectively.

A major part of this chapter has appeared in the paper titled “On a New Subclass of Univalent Functions”, Far East Journal of Mathematical Sciences(FJMS) [32].

2.2 Preliminaries

In the investigation of functions of the newly defined subclass, we need the following definitions and results.

Definition 2.2.1 (15). A sequence $\{C_n\}_{n=0}^{\infty}$ of non-negative real numbers is said to be a convex null sequence, if $C_n \to 0$ as $n \to \infty$ and

$$C_0 - C_1 \geq C_1 - C_2 \geq \ldots \geq C_n - C_{n+1} \geq \ldots \geq 0.$$

Definition 2.2.2 (7). Let c be a complex number. The Bernardi integral operator for a function $f \in \mathbb{A}$ is defined as

$$L_c(f) = c + 1 \int_0^{\frac{z}{c}} t^{c-1} f(t) dt.$$ (2.1)

Properties of this integral operator were studied by Bernardi for natural numbers.

If $c = 1$, we get the Libera’s operator [37] given by

$$L(f) = \frac{2}{z} \int_0^{\frac{z}{2}} f(t) dt.$$
Lemma 2.2.1 (17). Let \(\{C_n\}_{n=0}^{\infty} \) be a convex null sequence. Then the function
\[
q(z) = \frac{C_0}{2} + \sum_{n=1}^{\infty} C_n z^n
\]
is analytic in \(E \) and \(\text{Re} \ q(z) > 0 \).

Lemma 2.2.2 (15). If \(p(z) \) is analytic in \(E \), \(p(0) = 1 \) and \(\text{Re} \ p(z) > \frac{1}{2} \), \(z \in E \), then for any function \(f \) analytic in \(E \), the function \(f * p \) takes values in the convex hull of the image of \(E \) under \(f \).

Lemma 2.2.3 (66). Let \(g(z) = 1 + \sum_{k=1}^{\infty} a_k z^k \) be subordinate to
\[
G(z) = 1 + \sum_{k=1}^{\infty} b_k z^k \text{ in } E. \text{ If } G(z) \text{ is univalent in } E \text{ and } G(E) \text{ is convex, then } |a_n| \leq |b_1| = |G'(0)|.
\]

Theorem 2.2.1 (68). Let \(c \) be a complex number with \(\text{Re} \ c > 0 \). Then
\[
g(z) = \frac{c + 1}{z^c} \int_{0}^{z} \frac{t^c}{1 - t} \, dt
\]
is convex univalent in \(E \).

2.3 The Class \(N(\alpha, \beta, \gamma) \)

In this section, we define a three parameter family \(N(\alpha, \beta, \gamma) \) of \(A \) and obtain univalence and other properties of this class.

Definition 2.3.1. Let
\[
N(\alpha, \beta, \gamma) = \{ f \in A : \text{Re}(\alpha z^2 f'''(z) + \beta z f''(z) + f'(z)) > \gamma, \ \alpha \geq 0, \beta \geq 0, \ 0 \leq \gamma < 1 \}. \tag{2.2}
\]
We note that, for $z \in E$,

1. $N(0, 0, 0) = P' = \{ f \in \mathbb{A} : \text{Re}(f'(z)) > 0 \}.$

2. $N(0, 0, \gamma) = P'_\gamma = \{ f \in \mathbb{A} : \text{Re}(f'(z)) > \gamma \}.$

3. $N(0, 1, 0) = R = \{ f \in \mathbb{A} : \text{Re}(zf''(z) + f'(z)) > 0 \}.$

4. $N(0, \beta, 0) = R(\beta) = \{ f \in \mathbb{A} : \text{Re}(\beta zf''(z) + f'(z)) > 0, \beta > 0 \}.$

5. $N(0, \beta, \gamma) = R(\beta, \gamma)
 = \{ f \in \mathbb{A} : \text{Re}(\beta zf''(z) + f'(z)) > \gamma, \beta > 0, 0 \leq \gamma < 1 \}.$

These classes have been studied extensively by several authors. (See [1], [11], [13], [60], [62], [61]). In fact, the classes $R(\beta)$ and $R(\beta, \gamma)$ were studied with the more general condition $\text{Re} \beta \geq 0$.

2.3.1 Univalence of the Class $N(\alpha, \beta, \gamma)$

Now, we show that any function in $N(\alpha, \beta, \gamma)$ is univalent.

Theorem 2.3.1. Let $f \in N(\alpha, \beta, \gamma)$. Then f is univalent in E.

Proof. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in N(\alpha, \beta, \gamma)$.

Then,

\[
\text{Re} \left\{ \alpha z^2 f'''(z) + \beta z f''(z) + f'(z) \right\} = \text{Re} \left\{ 1 + \sum_{n=2}^{\infty} \left\{ \alpha (n-1)(n-2) + \beta (n-1) + 1 \right\} n a_n z^{n-1} \right\} > \gamma. \quad (2.3)
\]
Define a sequence \(\{C_n\}_{n=0}^\infty \) by
\[
C_0 = 1,
C_n = \frac{1}{\alpha n(n-1) + \beta(n-1) + 1}, \quad n \in \mathbb{N} = \{1, 2, 3, \ldots\}.
\]
Then, \(\{C_n\}_{n=0}^\infty \) is a convex null sequence. By lemma (2.2.1),
\[
q(z) = \frac{1}{2} + \sum_{n=2}^\infty \frac{1}{\alpha(n-1)(n-2) + \beta(n-1) + 1} z^{n-1}
\]
is analytic in \(E \) and \(\text{Re} \, q(z) > 0 \).
Define,
\[
p(z) = \frac{1}{2} + q(z) = 1 + \sum_{n=2}^\infty \frac{1}{\alpha(n-1)(n-2) + \beta(n-1) + 1} z^{n-1}.
\]
Then,
p(0) = 1, \(p(z) \) is analytic in \(E \) and \(\text{Re} \, p(z) > \frac{1}{2} \).
Now,
\[
f'(z) = 1 + \sum_{n=2}^\infty n a_n z^{n-1}
\]
\[= \left\{ 1 + \sum_{n=2}^\infty \{\alpha(n-1)(n-2) + \beta(n-1) + 1\} a_n z^{n-1} \right\}
\[\times \left\{ 1 + \sum_{n=2}^\infty \frac{1}{\alpha(n-1)(n-2) + \beta(n-1) + 1} z^{n-1} \right\}.
\]
Using (2.3) and lemma (2.2.2), it follows that \(\text{Re} \, f'(z) > \gamma \), i.e., \(f \) is close to convex of order \(\gamma \) and hence is univalent in \(E \).

Remark 2.3.1. \(N(\alpha, \beta, \gamma) \subset K \).

Theorem 2.3.2. If \(f \in N(\alpha, \beta, \gamma) \), then \(\text{Re} \left\{ \frac{f(z)}{z} \right\} > \gamma + \frac{1}{2} \).
Proof. Let \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in N(\alpha, \beta, \gamma) \).

Then

\[
\frac{f(z)}{z} = 1 + \sum_{n=2}^{\infty} a_n z^{n-1}. \tag{2.4}
\]

Define a sequence \(\{C_n\}_{n=0}^{\infty} \) by

\[
C_0 = 1, \quad C_n = \frac{2}{(n+1)(\alpha n(n-1) + \beta n + 1)}, \quad n \in \mathbb{N}.
\]

Then, \(\{C_n\}_{n=0}^{\infty} \) is a convex null sequence. By lemma (2.2.1),

\[
q(z) = \frac{1}{2} + \sum_{n=2}^{\infty} \frac{2}{n\{(\alpha n-1)(n-2) + (\beta n-1) + 1\}} z^{n-1}
\]

is analytic in \(E \) and Re \(q(z) > 0 \).

Define,

\[
p(z) = \frac{1}{2} + q(z) = 1 + \sum_{n=2}^{\infty} \frac{2}{n\{(\alpha n-1)(n-2) + (\beta n-1) + 1\}} z^{n-1}.
\]

Then, \(p(0) = 1 \), \(p(z) \) is analytic and Re \(p(z) > 1/2 \).

From (2.3),

\[
\text{Re} \left\{ 1 + \frac{1}{2} \sum_{n=2}^{\infty} \{\alpha(n-1)(n-2) + \beta(n-1) + 1\} na_n z^{n-1} \right\} > \frac{\gamma + 1}{2}. \tag{2.5}
\]

Also, from (2.4)

\[
\frac{f(z)}{z} = \left[1 + \frac{1}{2} \sum_{n=2}^{\infty} \{\alpha(n-1)(n-2) + \beta(n-1) + 1\} na_n z^{n-1} \right]
\]

29
\[* \left[1 + \sum_{n=2}^{\infty} \frac{2}{n\{\alpha(n-1)(n-2) + \beta(n-1) + 1\}} z^{n-1} \right] \]

The theorem follows from lemma (2.2.2) and equation (2.5).

\textbf{Remark 2.3.2.} If \(f \in N(\alpha, \beta, \gamma) \), then \(\text{Re}\left(\frac{f(z)}{z} \right) > \frac{1}{2} \).

\subsection*{2.3.2 Convolution Properties}

It is well known that if \(f, g \in K \), then \(f \ast g \) need not be in \(K \). In the following theorem we prove that if \(f, g \in N(\alpha, \beta, \gamma) \), a subclass of \(K \), then so does \(f \ast g \). i.e., we prove that \(N(\alpha, \beta, \gamma) \) is closed with respect to the Hadamard product.

\textbf{Theorem 2.3.3.} If \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \) and \(g(z) = z + \sum_{n=2}^{\infty} b_n z^n \) are in \(N(\alpha, \beta, \gamma) \), then so does their convolution \(\phi(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n \).

\textit{Proof.} Let \(\phi(z) = (f \ast g)(z) \).

Then,

\[\alpha z^2 \phi'''(z) + \beta z \phi''(z) + \phi'(z) = \{\alpha z^2 f'''(z) + \beta z f''(z) + f'(z)\} * \frac{g(z)}{z}. \tag{2.6} \]

Now, \(f \in N(\alpha, \beta, \gamma) \) satisfies (2.3) and \(\text{Re}\left(\frac{g(z)}{z} \right) > \frac{1}{2} \) from theorem (2.3.2).

Hence, from equation (2.6) and lemma (2.2.2), we get,

\[\text{Re}\{\alpha z^2 \phi'''(z) + \beta z \phi''(z) + \phi'(z)\} > \gamma. \]

Thus, \(\phi = f \ast g \in N(\alpha, \beta, \gamma) \). \qed
From the proof of the above theorem, it is clear that the following more general result holds:

Theorem 2.3.4. If \(f \in N(\alpha, \beta, \gamma) \) and \(g \in \mathbb{A} \) is such that
\[
\text{Re}\left(\frac{g(z)}{z}\right) > \frac{1}{2}, \quad z \in E,
\]
then \(f \ast g \in N(\alpha, \beta, \gamma) \).

Remark 2.3.3. We observe that \(\text{Re}\left(\frac{g(z)}{z}\right) > \frac{1}{2}, \quad z \in E \), need not even imply the univalence of \(g \) in \(E \).

Application of theorem (2.3.4), leads to the following convolution properties of the class \(N(\alpha, \beta, \gamma) \).

Corollary 2.3.1. If \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \) is in \(N(\alpha, \beta, \gamma) \), then so does
\[
f_k(z) = z + \sum_{n=2}^{\infty} a_{nk+1} z^{nk+1}, \quad k = 1, 2, 3, ...
\]

Proof. Let
\[
g(z) = \frac{z}{1-z^k} = z + \sum_{n=2}^{\infty} z^{nk+1}.
\]
Then,
\[
\text{Re}\left(\frac{g(z)}{z}\right) = \text{Re}\left(\frac{1}{1-z^k}\right) > \frac{1}{2}, \quad z \in E.
\]
Now,
\[
f_k(z) = (f \ast g)(z)
\]
and the corollary follows from theorem (2.3.4). \(\square \)

Corollary 2.3.2. Let \(f \in N(\alpha, \beta, \gamma) \).

Then,
\[
F(z) = \int_{0}^{z} \frac{f(t)}{t} dt
\]
is also in \(N(\alpha, \beta, \gamma) \).

Proof. We have
\[
F(z) = (f \ast g)(z)
\]
where \(g(z) = \log \left(\frac{1}{1 - z} \right) \) is convex univalent in \(E \) and hence
\[
\Re \left(\frac{g(z)}{z} \right) > \frac{1}{2} \quad \text{and the corollary follows.}
\]

Remark 2.3.4. It is well known that
\(g \in S^*(1/2) \Rightarrow \Re \left(\frac{g(z)}{z} \right) > \frac{1}{2}, \quad z \in E. \)

Thus, it follows from theorem (2.3.4) that, if
\(f \in N(\alpha, \beta, \gamma) \) and \(g \in S^*(1/2) \), then \(f \ast g \in N(\alpha, \beta, \gamma). \)

Corollary 2.3.3. Let \(f \in N(\alpha, \beta, \gamma). \)

Then,
\[
F(z) = \int_0^z \frac{f(t) - f(xt)}{t - xt} dt, \quad |x| \leq 1, \quad x \neq 1,
\]
is also in \(N(\alpha, \beta, \gamma). \)

Proof. We have
\[
F(z) = (f \ast g)(z)
\]
where
\[
g(z) = \frac{1}{1 - x} \log \left(\frac{1 - xz}{1 - z} \right).
\]
The function \(g(z) \) is convex univalent in \(E \) and hence the corollary.

Corollary 2.3.4. Let \(f \in N(\alpha, \beta, \gamma). \) Then \(L_c(f) \) defined as in (2.1) is in \(N(\alpha, \beta, \gamma) \) for \(\Re c > 0. \)

Proof. We have
\[
L_c(f) = (f \ast g)(z)
\]
where
\[
g(z) = \frac{c + 1}{z^c} \int_0^z \frac{t^c}{1 - t} dt.
\]
From theorem (2.2.1), \(g(z) \) is convex univalent in \(E \), for \(\Re c > 0. \)
Hence \(\text{Re} \left(\frac{g(z)}{z} \right) > \frac{1}{2}, \ z \in E \) and the result follows.

Now, we explore some convolution properties of partial sums.

Let \(f \in A \) be given by (1.1).

Then,

\[
s_n(z) = z + \sum_{k=2}^{n} a_k z^k, \quad (n \in \mathbb{N} \setminus \{1\})
\]

is called the partial sum of \(f \).

Corollary 2.3.5. Let \(f \in N(\alpha, \beta, \gamma) \) be given by (1.1). Let

\[
s_n(z) = z + \sum_{k=2}^{n} a_k z^k, \quad (n \in \mathbb{N} \setminus \{1\}). \tag{2.7}
\]

Then

\[
\frac{1}{r_n} s_n(r_n z) \in N(\alpha, \beta, \gamma)
\]

where \(r_n \) is given by

\[
r_n = \sup \left\{ r : \text{Re} \left(\sum_{k=0}^{n-1} z^k \right) > \frac{1}{2}, (|z| = r < 1) \right\}, \quad (n \in \mathbb{N} \setminus \{1\}). \tag{2.8}
\]

Proof. Let

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in N(\alpha, \beta, \gamma).
\]

Let

\[
g_n(z) = \sum_{k=1}^{n} z^k.
\]

Then,

\[
s_n(z) = (f \ast g_n)(z).
\]

From (2.8), it follows that

\[
\text{Re} \left(\frac{g_n(r_n z)}{r_n z} \right) > \frac{1}{2}, \quad z \in E \quad (n \in \mathbb{N} \setminus \{1\}).
\]

33
An application of theorem (2.3.4), leads to

\[
\frac{1}{r_n}s_n(r_nz) = f(z) \ast \left(g_n(r_nz) \right) \in N(\alpha, \beta, \gamma), \quad (n \in \mathbb{N} \setminus \{1\}).
\]

\[\square\]

Remark 2.3.5. For \(r_n \) given by (2.8), we have \(r_2 = 1/2 \).

For \(n = 3 \) and \(z = re^{i\theta} \), we have

\[
\text{Re}\{z^2 + z + 1\} = \frac{7}{8} - r^2 + \frac{(4 \cos \theta + 1)^2}{8}
\]

which yields \(r_3 = \sqrt{6}/4 \).

For \(n \in \mathbb{N} \setminus \{1, 2, 3\} \) and \(|z| = 1/2 \), we get

\[
\text{Re}\left\{ \sum_{k=0}^{n-1} z^k \right\} = \text{Re}\left\{ \frac{1 - z^n}{1 - z} \right\}
\]

\[
= \text{Re}\left\{ \frac{1}{1 - z} \right\} - \text{Re}\left\{ \frac{z^n}{1 - z} \right\}
\]

\[
\geq \frac{1 + |z|}{1 - |z|} - \frac{|z|^n}{1 - |z|}
\]

\[
= \frac{2}{3} - \frac{1}{2^{n-1}}
\]

\[
\geq 13/24.
\]

Thus, we have, \(r_n > 1/2 \) \((n \in \mathbb{N} \setminus \{1, 2\}) \).

Remark 2.3.6. MacGregor [45], proved that, if \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \mathbb{A} \) satisfies \(\text{Re} f'(z) > 0 \), \(z \in E \), then the function \(s_n(z) \) is univalent in \(|z| < \frac{1}{2} \).

But this result is not sharp when \(n \in \mathbb{N} \setminus \{1, 2\} \).

Corollary 2.3.6. Let \(f \in N(\alpha, \beta, \gamma) \). Let \(s_n(z) \) be as defined in (2.7). Then
the function,

$$
\sigma_n(z) = \int_0^z \frac{s_n(t)}{t} dt, \quad (n \in \mathbb{N} \setminus \{1\})
$$

belongs to the class $N(\alpha, \beta, \gamma)$.

Proof. We have

$$
\sigma_n(z) = z + \sum_{k=2}^{n} a_k z^k = (f \ast g_n)(z), \quad (n \in \mathbb{N} \setminus \{1\}) \tag{2.9}
$$

where $f \in N(\alpha, \beta, \gamma)$ and $g_n(z) = z + \sum_{k=2}^{n} \frac{z^k}{k}$.

Since (see [68]),

$$
\text{Re} \left(\frac{g_n(z)}{z} \right) > \frac{1}{2}, \quad z \in E,
$$

it follows from (2.9) and theorem (2.3.4), that $\sigma_n(z) \in N(\alpha, \beta, \gamma)$. \hfill \qed

Corollary 2.3.7. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in N(\alpha, \beta, \gamma)$. Let $s_n(z)$ be as defined by (2.7). Then $\text{Re} \{s_n'(z)\} > \gamma$ for $|z| < r_n$, where r_n is given by (2.8).

Proof. Let $s_n(z)$ be as defined in (2.7). Then,

$$
s_n'(z) = 1 + \sum_{k=2}^{n} k a_k z^{k-1}
= f'(z) \ast g_n(z)
$$

where

$$
g_n(z) = \sum_{k=0}^{n-1} z^k.
$$

35
Since $\text{Re} \{ f'(z) \} > \gamma$ from theorem (2.3.1) and $\text{Re} \left\{ \frac{g_n(z)}{z} \right\} > \frac{1}{2}$, for $|z| < r_n$, application of lemma (2.2.2) leads to $\text{Re} \left\{ s'_n(z) \right\} > \gamma$ for $|z| < r_n$.

Remark 2.3.7. From the above corollary, we see that $s_n(z)$ is close to convex of order γ and hence is univalent in $|z| < r_n$.

36